The formation of phenotypic traits, such as biomass production, tumor volume and viral abundance, undergoes a complex process in which interactions between genes and developmental stimuli take place at each level of biological organization from cells to organisms. Traditional studies emphasize the impact of genes by directly linking DNA-based markers with static phenotypic values. Functional mapping, derived to detect genes that control developmental processes using growth equations, has proven powerful for addressing questions about the roles of genes in development. By treating phenotypic formation as a cohesive system using differential equations, a different approach-systems mapping-dissects the system into interconnected elements and then map genes that determine a web of interactions among these elements, facilitating our understanding of the genetic machineries for phenotypic development. Here, we argue that genetic mapping can play a more important role in studying the genotype-phenotype relationship by filling the gaps in the biochemical and regulatory process from DNA to end-point phenotype. We describe a new framework, named network mapping, to study the genetic architecture of complex traits by integrating the regulatory networks that cause a high-order phenotype. Network mapping makes use of a system of differential equations to quantify the rule by which transcriptional, proteomic and metabolomic components interact with each other to organize into a functional whole. The synthesis of functional mapping, systems mapping and network mapping provides a novel avenue to decipher a comprehensive picture of the genetic landscape of complex phenotypes that underlie economically and biomedically important traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896925PMC
http://dx.doi.org/10.1093/bib/bbs049DOI Listing

Publication Analysis

Top Keywords

network mapping
12
comprehensive picture
8
picture genetic
8
genetic landscape
8
landscape complex
8
complex traits
8
functional mapping
8
system differential
8
differential equations
8
mapping
7

Similar Publications

Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.

View Article and Find Full Text PDF

χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation.

Hum Brain Mapp

February 2025

Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.

Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.

View Article and Find Full Text PDF

Background: The molecular of intervertebral disc degeneration (IVDD) is still unclear. When it comes to treating decoction, traditional Chinese medicine is effective. In particular, the Duhuo (Radix Angelicae Biseratae) may be particularly helpful.

View Article and Find Full Text PDF

Background: Understanding resilience factors in children is essential for developing early mental health interventions. Middle childhood is an understudied developmental stage, with many quantitative measures lacking validation for this age group and not capturing diverse experiences. This study aimed to use body mapping, an arts-based method, as a novel approach to understand 7-10-year-old children's concepts of resilience (including definitions and factors that contribute to resilience) in East London.

View Article and Find Full Text PDF

Lithology classification is crucial for efficient and sustainable resource exploration in the oil and gas industry. Missing values in well-log data, such as Gamma Ray (GR), Neutron Porosity (NPHI), Bulk Density (RHOB), Deep Resistivity (RS), Delta Time Compressional (DTCO), Delta Time Shear (DTSM), and Resistivity Deep (RD), significantly affect machine learning classification accuracy. This study applied three algorithms, extreme gradient boosting (XGBoost), K-nearest neighbours (KNN), and the artificial neural network (ANN), to handle missing values in well-log datasets, particularly datasets with extreme missing data (30 %).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!