Salicylamidoxime was used to synthesize 13 new polynuclear Mn(III) complexes. We present the crystallographic structures, the magnetic susceptibility and the magnetization measurements of eight of them (1-8) with the general formula [Mn(6)O(2)(H(2)N-sao)(6)(L)(2)(solvent)(4-6)] (L = carboxylate, chloride, 2-cyanophenolate; solvent = H(2)O, MeOH, EtOH, py). These complexes consist of two trinuclear {Mn(III)(3)(μ(3)-O)(H(2)N-sao)(3)}(+) cationic units linked together via two oximate and two phenolate oxygen atoms. All behave as single-molecule magnets, with the spin ground state varying from 4 to 12 and anisotropy energy barriers from 24 to 86 K, the latter being as high as the present record barrier in the Mn(6) complexes. DFT calculations were performed to compute the exchange magnetic coupling constants J between the metallic ions and to provide an orbital interpretation of exchange. Our results are in line with previously reported results with the parent salicylaldoxime derivatives. The Mn-N-O-Mn torsion angle appears as the main parameter controlling the J values. The critical angle where the exchange coupling between two Mn(III) switches from antiferromagnetic to ferromagnetic is 27°, less than the one found in related complexes with salicylaldoxime (30°). We propose a structural classification of the {Mn(6)} complexes in four classes depending on the coordination of the axial carboxylate. The work points out the structural flexibility of such systems, their sensitivity to solvent effects and their ability to achieve high anisotropy energy barriers by simple desolvation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt31443fDOI Listing

Publication Analysis

Top Keywords

single-molecule magnets
8
anisotropy energy
8
energy barriers
8
complexes
5
synthesis crystal
4
crystal structure
4
structure magnetism
4
magnetism salicylamidoxime-based
4
salicylamidoxime-based hexanuclear
4
hexanuclear manganeseiii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!