Programmable multimode quantum networks.

Nat Commun

Australian Centre for Quantum-Atom Optics, Department of Quantum Science, The Australian National University, Canberra, ACT 0200, Australia.

Published: February 2013

Entanglement between large numbers of quantum modes is the quintessential resource for future technologies such as the quantum internet. Conventionally, the generation of multimode entanglement in optics requires complex layouts of beamsplitters and phase shifters in order to transform the input modes into entangled modes. Here we report the highly versatile and efficient generation of various multimode entangled states with the ability to switch between different linear optics networks in real time. By defining our modes to be combinations of different spatial regions of one beam, we may use just one pair of multi-pixel detectors in order to measure multiple entangled modes. We programme virtual networks that are fully equivalent to the physical linear optics networks they are emulating. We present results for N=2 up to N=8 entangled modes here, including N=2, 3, 4 cluster states. Our approach introduces the highly sought after attributes of flexibility and scalability to multimode entanglement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432462PMC
http://dx.doi.org/10.1038/ncomms2033DOI Listing

Publication Analysis

Top Keywords

entangled modes
12
generation multimode
8
multimode entanglement
8
linear optics
8
optics networks
8
modes
6
programmable multimode
4
multimode quantum
4
networks
4
quantum networks
4

Similar Publications

Scaling and networking a modular photonic quantum computer.

Nature

January 2025

Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.

Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.

View Article and Find Full Text PDF

High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.

View Article and Find Full Text PDF

Entanglement-Enabled Advantage for Learning a Bosonic Random Displacement Channel.

Phys Rev Lett

December 2024

Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.

We show that quantum entanglement can provide an exponential advantage in learning properties of a bosonic continuous-variable (CV) system. The task we consider is estimating a probabilistic mixture of displacement operators acting on n bosonic modes, called a random displacement channel. We prove that if the n modes are not entangled with an ancillary quantum memory, then the channel must be sampled a number of times exponential in n in order to estimate its characteristic function to reasonable precision; this lower bound on sample complexity applies even if the channel inputs and measurements performed on channel outputs are chosen adaptively or have unrestricted energy.

View Article and Find Full Text PDF

Undergraduate setup for measuring the Bell inequalities and performing quantum state tomography.

EPJ Quantum Technol

December 2024

Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona (UB), C. Martí i Franquès, 1, 08028 Barcelona, Spain.

The growth of quantum technologies is attracting the interest of many students eager to learn concepts such as quantum entanglement or quantum superposition. However, the non-intuitive nature of these concepts poses a challenge to understanding them. Here, we present an entangled photon system which can perform a Bell test, i.

View Article and Find Full Text PDF

In Situ Growth of Multiresponsive Structural Color Patterns within Hydrogels for Multiple Information Encryption.

ACS Appl Mater Interfaces

January 2025

College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological textile technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China.

Mimicking natural organisms to directly fabricate multiresponsive structural color patterns from small molecules is of great significance for information encryption but remains challenging. Herein, we present a bionic entanglement-interlocking microphase separation strategy for in situ growth of multiresponsive structural color patterns within hydrogel matrixes. The precursor solutions of common polymerization-induced phase-separated materials are used as small-molecule nutrients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!