AI Article Synopsis

  • In ER+ breast cancers, increased local estrogen production is mainly due to elevated activity of the aromatase enzyme, with the CYP19A1 gene often being overexpressed in nearby breast adipose fibroblasts, which is crucial for developing breast cancer therapies.
  • Prostaglandin E2 (PGE2), secreted by tumors, enhances CYP19A1 expression in BAFs, but the role of epigenetic mechanisms in this process, particularly regarding the EP2 receptor, is not fully understood.
  • Research showed an inverse relationship between EP2 promoter methylation and expression levels in various breast cancer cell lines, with treatments that inhibit DNA methylation significantly increasing EP2 mRNA, indicating

Article Abstract

The increase in local oestrogen production seen in oestrogen receptor positive (ER+) breast cancers is driven by increased activity of the aromatase enzyme. CYP19A1, the encoding gene for aromatase, is often overexpressed in the oestrogen-producing cells of the breast adipose fibroblasts (BAFs) surrounding an ER+ tumour, and the molecular processes underlying this upregulation is important in the development of breast-specific aromatase inhibitors for breast cancer therapy. Prostaglandin E2 (PGE2), a factor secreted by tumours, is known to stimulate CYP19A1 expression in human BAFs. The hormonal regulation of this process has been examined; however, what is less well understood is the emerging role of epigenetic mechanisms and how they modulate PGE2 signalling. This present study characterises the epigenetic processes underlying expression of the prostanoid receptor EP2 in the context of ER+ breast cancer. Sodium bisulphite sequencing of CpG methylation within the promoter region of EP2 revealed that an inverse correlation existed between methylation levels and relative EP2 expression in breast cancer cell lines MDA-MB-231, MCF7 and MCF10A but not in HS578t and T47D. Inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5aza) and histone deacetylation with Trichostatin A (TSA) resulted in upregulation of EP2 mRNA in all cell lines with varying influences of each epigenetic process observed. Expression of EP2 was detected in human BAFs despite a natively methylated promoter, and this expression was further increased upon 5aza treatment. An examination of 3 triple negative, 3 ductal carcinoma in situ and 3 invasive ductal carcinoma samples revealed that there was no change in EP2 promoter methylation status between normal and cancer associated stroma, despite observed differences in relative mRNA levels. Although EP2 methylation status is inversely correlated to expression levels in established breast cancer cell lines, we could not identify that such a correlation existed in tumour-associated stroma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2012.07.007DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cell lines
12
epigenetic mechanisms
8
er+ breast
8
processes underlying
8
human bafs
8
correlation existed
8
cancer cell
8
ductal carcinoma
8
methylation status
8

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.

Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!