Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current theories on the role of visuomotor coordination in driving agree that active sampling of the road by the driver informs the arm-motor system in charge of performing actions on the steering wheel. Still under debate, however, is the nature of visual cues and gaze strategies used by drivers. In particular, the tangent point hypothesis, which states that drivers look at a specific point on the inside edge line, has recently become the object of controversy. An alternative hypothesis proposes that drivers orient gaze toward the desired future path, which happens to be often situated in the vicinity of the tangent point. The present study contributed to this debate through the analyses of the distribution of gaze orientation with respect to the tangent point. The results revealed that drivers sampled the roadway in the close vicinity of the tangent point rather than the tangent point proper. This supports the idea that drivers look at the boundary of a safe trajectory envelop near the inside edge line. Furthermore, the study investigated for the first time the reciprocal influence of manual control on gaze control in the context of driving. This was achieved through the comparison of gaze behavior when drivers actively steered the vehicle or when steering was performed by an automatic controller. The results showed an increase in look-ahead fixations in the direction of the bend exit and a small but consistent reduction in the time spent looking in the area of the tangent point when steering was passive. This may be the consequence of a change in the balance between cognitive and sensorimotor anticipatory gaze strategies. It might also reflect bidirectional coordination control between the eye and arm-motor systems, which goes beyond the common assumption that the eyes lead the hands when driving.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425540 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043858 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!