Gliomas are the most devastating of primary adult malignant brain tumors. These tumors are highly infiltrative and can arise from cells with extensive self-renewal capability and chemoresistance, frequently termed glioma-propagating cells (GPCs). GPCs are thus the plausible culprits of tumor recurrence. Treatment strategies that eradicate GPCs will greatly improve disease outcome. Such findings support the use of GPCs as in vitro cellular systems for small-molecule screening. However, the nuances in using GPCs as a cellular screening platform are not trivial. These slow-growing cells are typically cultured as suspension, spheroid structures in serum-free condition supplemented with growth factors. Consequently, replenishment of growth factors throughout the screening period must occur to maintain cells in their undifferentiated state, as the more lineage-committed, differentiated cells are less tumorigenic. We present a case study of a small-molecule screen conducted with GPCs and explain how unique sphere activity assays were implemented to distinguish drug efficacies against the long-term, self-renewing fraction, as opposed to transient-amplifying progenitors, the latter of which are detected in conventional viability assays. We identified Polo-like kinase 1 as a regulator of GPC survival. Finally, we leveraged on public glioma databases to illustrate GPC contribution to disease progression and patient survival outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057112457820DOI Listing

Publication Analysis

Top Keywords

glioma-propagating cells
8
screening platform
8
case study
8
growth factors
8
gpcs
6
cells
5
cells vitro
4
screening
4
vitro screening
4
platform plk1
4

Similar Publications

Background: Precision treatment of glioblastoma is increasingly focused on molecular subtyping, with the mesenchymal subtype particularly resistant to temozolomide. Here, we aim to develop a targeted therapy for temozolomide resensitization in the mesenchymal subtype.

Methods: We integrated kinomic profiles and kinase inhibitor screens from patient-derived proneural and mesenchymal glioma-propagating cells and public clinical datasets to identify key protein kinases implicated in temozolomide resistance.

View Article and Find Full Text PDF

Gamma Irradiation Triggers Immune Escape in Glioma-Propagating Cells.

Cancers (Basel)

May 2022

Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.

Glioblastoma multiforme is the most common and devastating form of brain tumor for which only palliative radio- and chemotherapy exists. Although some clinical studies on vaccination approaches have shown promising efficacy due to their potential to generate long-term immune surveillance against cancer cells, the evasion mechanisms preventing therapy response are largely uncharacterized. Here, we studied the response of glioblastoma-propagating cells (GPCs) to clinically relevant doses of γ radiation.

View Article and Find Full Text PDF

Glioblastoma (GBM) cells invade the brain by following linear structures like blood vessel walls and white matter tracts by using specific motility modes. In this protocol, we describe two micropatterning techniques allowing recapitulation of these linear tracks : micro-contact printing and deep UV photolithography. We also detail how to maintain, transfect, and prepare human glioma propagating cells (hGPCs) for migration assays on linear tracks, followed by image acquisition and analysis, to measure key parameters of their motility.

View Article and Find Full Text PDF

Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties.

View Article and Find Full Text PDF

Hypoxic microenvironment is a hallmark of solid tumors, especially glioblastoma. The strong reliance of glioma-propagating cells (GPCs) on hypoxia-induced survival advantages is potentially exploitable for drug development. To identify key signaling pathways for hypoxia adaptation by patient-derived GPCs, we performed a kinase inhibitor profiling by screening 188 small molecule inhibitors against 130 different kinases in normoxia and hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!