Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2012-05-431783 | DOI Listing |
Biomolecules
January 2025
National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy.
In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Biosciences Institute & Newcastle University Cancer Centre, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
Chronic lymphocytic leukemia (CLL) treatment has transitioned from traditional chemotherapy to more targeted therapies, but challenges such as resistance and suboptimal responses persist. This study aimed to evaluate HDM201, a second-generation MDM2-p53 binding antagonist, as a novel therapeutic strategy for CLL, with a focus on its effectiveness across different genetic contexts. We utilized a panel of B cell leukemia-derived cell lines with varying statuses, including -knockout (KO) derivatives of the human B cell line Nalm-6, and assessed the impact of HDM201 on primary CLL samples with both wild-type and mutant backgrounds.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Division of Hematology and Medical Oncology, University of Washington, Seattle, WA 98195, USA.
Pathway inhibitors targeting Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) have dramatically changed the treatment landscape for both treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL). However, with increased utilization, a growing number of patients will experience progressive disease on both agents. This subgroup of "double refractory" patients has limited treatment options and poor prognosis.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland.
Background/objectives: The current study explores the impact of CLL on γδ T cells and, in an attempt to better understand the sources of immunosuppression, assesses the impact of M-MDSCs on γδ T cells in vitro.
Methods: The study included 163 CLL patients and 34 healthy volunteers. γδ T cells were screened with flow cytometry, including NKG2D, Fas, FasL, and TRAIL staining.
Biomark Res
January 2025
Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
Richter syndrome (RS), characterized by aggressive lymphoma arising from chronic lymphocytic leukaemia (CLL), presents a poor response to treatment and grim prognosis. To elucidate RS mechanisms, paired samples from a patient with DLBCL-RS were subjected to single-cell RNA sequencing (scRNA-seq) and high-throughput chromosome conformation capture (Hi-C) sequencing. Over 10,000 cells were profiled via scRNA-seq, revealing the comprehensive B cell transformation in RS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!