A litter of pups: The synthesis and in vitro evaluation of new Pup-based fluorogenic substrates for Dop, the mycobacterial depupylase, are described. A full-length Pup-amidomethylcoumarin conjugate as well as an amino-terminus-truncated analogue exhibited high sensitivity and specificity towards hydrolysis by Dop. The substrates developed here might find application as high-throughput screening assay reagents for the identification of Dop inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474595PMC
http://dx.doi.org/10.1002/cbic.201200460DOI Listing

Publication Analysis

Top Keywords

synthesis evaluation
4
evaluation selective
4
selective fluorogenic
4
fluorogenic pup
4
pup derived
4
derived assay
4
assay reagent
4
dop
4
reagent dop
4
dop potential
4

Similar Publications

Background: The triglyceride glucose-body mass index (TyG-BMI) is considered to be a reliable surrogate marker of insulin resistance (IR). However, limited evidence exists regarding its association with the severity of coronary artery disease (CAD), particularly in hypertensive patients with different glucose metabolic states, including those with H-type hypertension. This study aimed to investigate the relationship between TyG-BMI and CAD severity across different glucose metabolism conditions.

View Article and Find Full Text PDF

Identification of EXPA4 as a key gene in cotton salt stress adaptation through transcriptomic and coexpression network analysis of root tip protoplasts.

BMC Plant Biol

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.

Background: Salinity stress impairs cotton growth and fiber quality. Protoplasts enable elucidation of early salt-responsive signaling. Elucidating crop tolerance mechanisms that ameliorate these diverse salinity-induced stresses is key for improving agricultural productivity under saline conditions.

View Article and Find Full Text PDF

Copper Tantalate by a Sodium-Driven Flux-Mediated Synthesis for Photoelectrochemical CO Reduction.

Small Methods

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States.

Copper-tantalate, CuTaO (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C) production through photoelectrochemical (PEC) CO reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase.

View Article and Find Full Text PDF

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

This study was designed to evaluate the effect of substituting alfalfa hay with graded levels panicum maximum without or with graded levels of spirulina supplementation on rumen fermentation and nutrient degradability. The evaluation was achieved through an in vitro study, rumen fluid was obtained from adult sheep aged 2 years (fed clover hay), immediately after slaughter. Experimental diets were formulated as isonitrogenous and isocaloric and contained 40% forage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!