Pneumocystis is an opportunistic fungal pathogen that causes pneumonia in a variety of clinical settings. An early step in Pneumocystis infection involves the attachment of organisms to alveolar epithelial cells (AECs). AECs produce chemokines in response to Pneumocystis stimulation, but the upstream host-pathogen interactions that activate AEC signaling cascades are not well-defined. MyD88 is an adaptor molecule required for activation of proinflammatory signaling cascades following Toll-like receptor (TLR)-dependent recognition of conserved molecular patterns on pathogens. To determine whether the TLR/MyD88 pathway is required for the AEC chemokine response to Pneumocystis, wild-type (WT) and MyD88-deficient AECs were incubated with Pneumocystis. As expected, WT AECs produced CCL2 and CXCL2 following Pneumocystis stimulation. In contrast, MyD88-deficient AECs were severely impaired in their ability to respond to Pneumocystis. MyD88-deficient AECs did not display Pneumocystis-induced Jun N-terminal protein kinase activation and produced much less chemokine than Pneumocystis-stimulated WT AECs. Using a panel of TLR agonists, primary murine AECs were found to respond vigorously to TLR2 and TLR4 agonists. However, the AEC chemokine response to Pneumocystis did not require TLR2 or TLR4. Surprisingly, the interleukin-1 receptor (IL-1R) was required for an AEC chemokine response to Pneumocystis. The role of MyD88 in early responses during Pneumocystis infection was supported by in vivo studies demonstrating that MyD88-deficient mice showed impaired Pneumocystis-stimulated chemokine production and impaired inflammatory cell recruitment. These data indicate an important role for MyD88 in the AEC inflammatory response to Pneumocystis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486052 | PMC |
http://dx.doi.org/10.1128/IAI.00708-12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!