This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522782 | PMC |
http://dx.doi.org/10.1002/bem.21750 | DOI Listing |
Light Sci Appl
January 2025
Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
Combining bright-field and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects, which is particularly beneficial for biological imaging. Multiplexing meta-lenses present promising candidates for achieving this functionality. However, current multiplexing meta-lenses lack spectral modulation, and crosstalk between different wavelengths hampers the imaging quality, especially for biological samples requiring precise wavelength specificity.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
The accumulation of construction solid waste (CSW) leads to the waste of land resources and environmental pollution, becoming a significant social problem. Identifying the amount of high-value CSW is essential for assessing the value of accumulated CSW and formulating appropriate recycling strategies. With the development of machine learning technology, CSW recognition techniques combining image acquisition devices and convolutional neural networks have been widely applied.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.
This paper presents an X-band high-power GaN MMIC power amplifier (PA). To balance efficiency, output power, and saturated power flatness, the load-line theory is employed to analyze and validate the power variation trends within an extended continuous Class B/J (CCBJ) impedance space. Theoretical constant power contours are plotted within this space.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China.
A stacked metamaterial MEMS (meta-MEMS) chip is proposed, which can perfectly absorb electromagnetic waves, convert them into mechanical energy, drive movement of the optical micro-reflectors array, and detect millimeter waves. It is equivalent to using visible light to image a millimeter wave. The meta-MEMS adopts the design of upper and lower chip separation and then stacking to achieve the "dielectric-resonant-air-ground" structure, reduce the thickness of the metamaterial and MEMS structures, and improve the performance of millimeter wave imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!