Renal cell carcinoma (RCC) is the most common neoplasm of the kidney. We conducted an integrated analysis of copy number, gene expression (mRNA and miRNA), protein expression, and methylation changes in clear cell renal cell carcinoma (ccRCC). We used a stepwise approach to identify the most significant copy number aberrations (CNA) and identified regions of peak and broad copy number gain and loss, including peak gains (3q21, 5q32, 5q34-q35, 7p11, 7q21, 8q24, 11q13, and 12q14) and deletions (1p36, 2q34-q37, 3p25, 4q33-q35, 6q23-q27, and 9p21). These regions harbor novel tumor-related genes and miRNAs not previously reported in renal carcinoma. Integration of genome-wide expression data and gene set enrichment analysis revealed 75 gene sets significantly altered in tumors with CNAs compared with tumors without aberration. We also identified genes located in peak CNAs with concordant methylation changes (hypomethylated in copy number gains such as STC2 and CCND1 and hypermethylated in deletions such as CLCNKB, VHL, and CDKN2A/2B). For other genes, such as CA9, expression represents the net outcome of opposing forces (deletion and hypomethylation) that also significantly influences patient survival. We also validated the prognostic value of miRNA let-7i in RCCs. miR-138, located in chromosome 3p deletion, was also found to have suppressive effects on tumor proliferation and migration abilities. Our findings provide a significant advance in the delineation of the ccRCC genome by better defining the impact of CNAs in conjunction with methylation changes on the expression of cancer-related genes, miRNAs, and proteins and their influence on patient survival.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-12-0656DOI Listing

Publication Analysis

Top Keywords

copy number
16
renal cell
12
cell carcinoma
12
methylation changes
12
clear cell
8
cell renal
8
genes mirnas
8
patient survival
8
cell
5
expression
5

Similar Publications

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.

Nat Commun

December 2024

Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.

View Article and Find Full Text PDF

When formulating mRNA into lipid nanoparticles (LNP), various copy numbers of mRNA are encapsulated, leading to a distribution of mRNA loading levels within the LNPs. It is unclear whether the mRNA loading level affects the functional delivery of the message. Here we show that depending on the mRNA loading level, LNPs exhibit distinct mass densities and can be fractionated via ultracentrifugation.

View Article and Find Full Text PDF

Mitochondria are semi-autonomous organelles containing their own DNA (mtDNA), which is replicated independently of nuclear DNA (nDNA). While cell cycle arrest halts nDNA replication, mtDNA replication continues. In , flow cytometry enables semi-quantitative estimation of mtDNA levels by measuring the difference in signals between cells lacking mtDNA and those containing mtDNA.

View Article and Find Full Text PDF

Pan-cancer analysis shows that BCAP31 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types.

Front Immunol

December 2024

Department of Otolaryngology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.

Background: B-cell receptor-associated protein 31 (BCAP31) is a widely expressed transmembrane protein primarily located in the endoplasmic reticulum (ER), including the ER-mitochondria associated membranes. Emerging evidence suggests that BCAP31 may play a role in cancer development and progression, although its specific effects across different cancer types remain incompletely understood.

Methods: The raw data on BCAP31 expression in tumor and adjacent non-tumor (paracancerous) samples were obtained from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and UCSC databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!