Background: Whole Slide Imagers or digital slide scanners have developed very rapidly in the last 8 years and went through three generations. Third generation instruments have just reached the market which have the stability and throughput to be used for routine clinical work. We describe in this article the technical background and reasoning behind engineering decisions we made during the development of 3DHISTECH's 3rd generation combined brightfield and fluorescent scanner.

Materials And Methods: The Panoramic 250 FLASH utilizes Plan-Apochromat 20x and 40x objectives, a 2 megapixel 3CCD camera for brightfield and a monochrome scientific CMOS camera for fluorescent scanning. A solid state light engine for fluorescent and a strobe light for bright field illumination are used.

Results: The system can scan 1cm2 including focusing at 45x resolution in 1 minute. It can scan a well stained DAPI, FITC, TRIC, 1cm2 fluorescent slide in 11 minutes. It can load and scan 250 slides in walk away mode.

Conclusion: Using the latest camera technology and electronics, state of the art computer and standard microscope optical components high throughput high quality whole slide imaging is feasible and is sufficient for most of the routine diagnostic work. Extended depth of field and Z-stack scanning is possible with the use of area scan technology.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high throughput
8
slide imaging
8
solid state
8
state light
8
light engine
8
slide
5
automated high
4
throughput slide
4
imaging area
4
area sensors
4

Similar Publications

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

Bacterial proteome microarray technology in biomedical research.

Trends Biotechnol

January 2025

Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

High-throughput screening of acetogenic strains for growth and metabolite profiles on readily available biomass.

Bioresour Technol

January 2025

Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:

Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.

View Article and Find Full Text PDF

Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.

View Article and Find Full Text PDF

Qingwen Zhike prescription (QWZK), a traditional Chinese medicine (TCM) hospital prescription developed in response to the corona virus disease 2019 (COVID-19) pandemic, has demonstrated efficacy in clinical practice. Nevertheless, its specific antiviral components and mechanisms of action remain unclear. This study screened the antiviral compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Qingwen Zhike prescription and explored the underlying mechanism through chemical composition analysis, serum and lung exposure profiles analysis, high-throughput screening, and transmission electron microscopy (TEM) observation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!