A liquid chromatography-tandem mass spectrometry method for quantification of bendamustine in mouse brain tissue was developed and fully validated. Methanol was used to precipitate proteins in brain tissue. Bendamustine and internal standard (chlorambucil) were separated with reverse-phase chromatography on a C-18 column with a gradient of water and 95% methanol in 0.1% formic acid. Positive mode electrospray ionization was applied with selected reaction monitoring to achieve 5 ng/ml lower limits of quantitation in mouse brain tissue. The calibration curve for bendamustine in mouse brain was linear between 5 and 2000 ng/ml. The within- and between-batch accuracy and precision of the assay were within 15% at 10, 100 and 1000 ng/ml. The recovery and matrix effect of bendamustine in mouse brain tissue ranged from 41.1% to 51.6% and 107.4% to 110.3%, respectively. The validated method was then applied to quantitate bendamustine in an animal study. Results indicate the assay can be applied to evaluate bendamustine disposition in mouse brain tissue. This assay will be applied in the future to detect and quantify bendamustine in human brain tissue samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856370PMC
http://dx.doi.org/10.1016/j.jchromb.2012.08.013DOI Listing

Publication Analysis

Top Keywords

brain tissue
28
mouse brain
24
bendamustine mouse
16
mass spectrometry
8
spectrometry method
8
method quantification
8
bendamustine
8
quantification bendamustine
8
brain
8
tissue
7

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

Background: Immunosenescence is the aging of the immune system, which is closely related to the development and prognosis of lung cancer. Targeting immunosenescence is considered a promising therapeutic approach.

Methods: We defined an immunosenescence gene set (ISGS) and examined it across 33 TCGA tumor types and 29 GTEx normal tissues.

View Article and Find Full Text PDF

Pericytes in Glioblastoma: Hidden Regulators of Tumor Vasculature and Therapy Resistance.

Cancers (Basel)

December 2024

Research Group on Tumors of the Central Nervous System, Pathology Department, University of Valencia, 46010 Valencia, Spain.

Glioblastoma IDH wild type (GB), the most common malignant primary brain tumor, is characterized by rapid proliferation, extensive infiltration into surrounding brain tissue, and significant resistance to current therapies. Median survival is only 15 months despite extensive clinical efforts. The tumor microenvironment (TME) in GB is highly specialized, supporting the tumor's aggressive behavior and its ability to evade conventional treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!