In a methanogenic crude oil contaminated aquifer near Bemidji, Minnesota, the decrease in dissolved CH(4) concentrations along the groundwater flow path, along with the positive shift in δ(13) C(CH) (4) and negative shift in δ(13) C(DIC) , is indicative of microbially mediated CH(4) oxidation. Calculations of electron acceptor transport across the water table, through diffusion, recharge, and the entrapment and release of gas bubbles, suggest that these processes can account for at most 15% of the observed total reduced carbon oxidation, including CH(4) . In the anaerobic plume, the characteristic Fe(III)-reducing genus Geobacter was the most abundant of the microbial groups tested, and depletion of labile sediment iron is observed over time, confirming that reduced carbon oxidation coupled to iron reduction is an important process. Electron mass balance calculations suggest that organic carbon sources in the aquifer, BTEX and non-volatile dissolved organic carbon, are insufficient to account for the loss in sediment Fe(III), implying that CH(4) oxidation may also be related to Fe(III) reduction. The results support a hypothesis of Fe(III)-mediated CH(4) oxidation in the contaminated aquifer.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1472-4669.2012.00341.xDOI Listing

Publication Analysis

Top Keywords

ch4 oxidation
12
contaminated aquifer
8
shift δ13
8
reduced carbon
8
carbon oxidation
8
organic carbon
8
oxidation
6
ch4
5
evidence iron-mediated
4
iron-mediated anaerobic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!