Plague, an often-fatal zoonotic disease caused by Yersinia pestis, is characterized by epizootic and quiescent periods. How Y. pestis is maintained during inter-epizootic periods is poorly understood, but soil has been implicated as a potential reservoir. Although previous studies have suggested that Y. pestis is able to survive in soil for weeks or months, it is unclear whether or not it is infectious to susceptible hosts. Here we investigate the potential for Y. pestis to infect mice through close contact with contaminated soil under laboratory conditions. In an attempt to approximate the natural conditions under which animals would be exposed to Y. pestis-contaminated soil, mouse cages filled with soil from a plague-endemic region were held at temperature and humidity ranges observed in ground squirrel burrows. These laboratory "burrows" were contaminated with highly bacteremic blood (>10(8) cfu/mL) to simulate the introduction of infectious material from a dying animal during an epizootic. Outbred Swiss-Webster mice with scarified skin patches were held on contaminated soil for 10 days and monitored for signs of illness. Following exposure to contaminated soil, one animal of 104 became infected with Y. pestis. None of the remaining animals seroconverted following a 21-day holding period. Under our experimental conditions, which maximized the likelihood of contact between susceptible mice and contaminated soil, transmission efficiency from soil to mice was 0.96% (95% CI 0.17, 5.25%). This suggests that although transmission of Y. pestis from contaminated soils is possible, it is not likely a major transmission route under natural conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591033 | PMC |
http://dx.doi.org/10.1089/vbz.2012.1031 | DOI Listing |
Microb Ecol
January 2025
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.
View Article and Find Full Text PDFMicrob Ecol
January 2025
IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFSci Rep
January 2025
College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!