The health-promoting property of diets rich in fruits and vegetables is based, in part, on the additive and synergistic effects of multiple antioxidants. In an attempt to further enhance food quality, we introduced into crops the capability to synthesize a yellow antioxidant, aureusidin, that is normally produced only by some ornamental plants. For this purpose, the snapdragon (Antirrhinum majus) chalcone 4'-O-glucosyltransferase (Am4'CGT) and aureusidin synthase (AmAs1) genes, which catalyse the synthesis of aureusidin from chalcone, were expressed in tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa) plants that displayed a functionally active chalcone/flavanone biosynthetic pathway. Leaves of the resulting transgenic plants developed a yellow hue and displayed higher superoxide dismutase (SOD) inhibiting and oxygen radical absorbance capacity (ORAC) activities than control leaves. Our results suggest that the nutritional qualities of leafy vegetables can be enhanced through the introduction of aurone biosynthetic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2012.00732.x | DOI Listing |
Nat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.
View Article and Find Full Text PDFViruses
December 2024
Applied Biotechnology Institute, California Polytechnic Tech Park, San Luis Obispo, CA 93407, USA.
Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China.
The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China.
Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!