The oxygen protection system for the bacterial nitrogen-fixing enzyme complex nitrogenase in actinorhizal nodules of Casuarina glauca resembles that of legume nodules: infected cells contain large amounts of the oxygen-binding protein hemoglobin and are surrounded by an oxygen diffusion barrier. However, while in legume nodules infected cells are located in the central tissue, actinorhizal nodules are composed of modified lateral roots with infected cells in the expanded cortex. Since an oxygen diffusion barrier around the entire cortex would also block oxygen access to the central vascular system where it is required to provide energy for transport processes, here each individual infected cell is surrounded with an oxygen diffusion barrier. In order to assess the effect of these oxygen diffusion barriers on oxygen supply for energy production for transport processes, apoplastic and symplastic sugar transport pathways in C. glauca nodules were examined. The results support the idea that sugar transport to and within the nodule cortex relies to a large extent on the less energy-demanding symplastic mechanism. This is in line with the assumption that oxygen access to the nodule vascular system is substantially restricted. In spite of this dependence on symplastic transport processes to supply sugars to infected cells, plasmodesmal connections between infected cells, and to a lesser degree with uninfected cells, were reduced during the differentiation of infected cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1399-3054.2012.01685.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!