Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction.

Tissue Eng Part B Rev

Division of Plastic and Reconstructive Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.

Published: February 2013

Despite the inherent capability for axonal regeneration, recovery following severe peripheral nerve injury remains unpredictable and often very poor. Surgeons typically use autologous nerve grafts taken from the patient's own body to bridge long nerve gaps. However, the amount of suitable nerve available from a given patient is limited, and using autologous grafts leaves the patient with scars, numbness, and other forms of donor-site morbidity. Therefore, surgeons and engineers have sought off-the-shelf alternatives to the current practice of autologous nerve grafting. Decellularized nerve allografts have recently become available as an alternative to traditional nerve autografting. In this review, we provide a critical analysis comparing the advantages and limitations of the three major experimental models of decellularized nerve allografts: cold preserved, freeze-thawed, and chemical detergent based. Current tissue engineering-based techniques to optimize decellularized nerve allografts are discussed. We also evaluate studies that supplement decellularized nerve grafts with exogenous factors such as Schwann cells, stem cells, and growth factors to both support and enhance axonal regeneration through the decellularized allografts. In examining the advantages and disadvantages of the studies of decellularized allografts, we suggest that experimental methods, including the animal model, graft length, follow-up time, and outcome measures of regenerative progress and success be consolidated. Finally, all clinical studies in which decellularized nerve allografts have been used to bridge nerve gaps in patients are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEB.2012.0275DOI Listing

Publication Analysis

Top Keywords

decellularized nerve
24
nerve allografts
20
nerve
14
decellularized
8
peripheral nerve
8
axonal regeneration
8
autologous nerve
8
nerve grafts
8
nerve gaps
8
decellularized allografts
8

Similar Publications

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

Decellularization of fish tissues for tissue engineering and regenerative medicine applications.

Regen Biomater

November 2024

Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.

Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.

View Article and Find Full Text PDF

In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!