A series of ruthenium complexes was isolated and characterized in the course of reactions aimed at studying the reduction of hydrazine to ammonia in bimetallic systems. The diruthenium complex {[HPNPRu(N(2))](2)(μ-Cl)(2)}(BF(4))(2) (2) (HPNP = HN(CH(2)CH(2)P(i)Pr(2))(2)) reacted with 1 equiv of hydrazine to generate [(HPNPRu)(2)(μ(2)-H(2)NNH(2))(μ-Cl)(2)](BF(4))(2) (3) and with an excess of the reagent to form [HPNPRu(NH(3))(κ(2)-N(2)H(4))](BF(4))Cl (5). When phenylhydrazine was added to 2, the diazene species [(HPNPRu)(2)(μ(2)-HNNPh)(μ-Cl)(2)](BF(4))(2) (4) was obtained. Treatment of 2 with H(2) or CO yielded {[HPNPRu(H(2))](2)(μ-Cl)(2)}(BF(4))(2) (7) and [HPNPRuCl(CO)(2)]BF(4) (8), respectively. Abstraction of chloride using AgOSO(2)CF(3) or AgBPh(4) afforded the species [(HPNPRu)(2)(μ(2)-OSO(2)CF(3))(μ-Cl)(2)]OSO(2)CF(3) (9) and [(HPNPRu)(2)(μ-Cl)(3)]BPh(4) (10), respectively. Complex 3 reacted with HCl/H(2)O or HCl/Et(2)O to produce ammonia stoichiometrically; the complex catalytically disproportionates hydrazine to generate ammonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic3010322 | DOI Listing |
Small
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
Controlled and optimized heterogenic interfacial coupling is the key to enhance the electrochemical performance. Herein, for the first time, telluride-based CoS/CoTe heterostructure is reported as a bifunctional catalyst for energy-efficient H generation. Detailed investigations suggest that the heterogenic interfacial coupling leads to superior bifunctional electrochemical performance of the CoS/CoTe heterostructure.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:
Water electrolysis represents a green and efficient strategy for hydrogen (H) production. However, the four-electron transfer process involved in its anodic oxygen evolution reaction (OER) half-reaction restricts the H generation rate. Employing hydrazine oxidation reaction (HzOR) as a substitute for OER in H generation can dramatically reduce energy consumption.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Chemistry, National Institute of Technology Calicut, Kerala 673601, India. Electronic address:
Hydrazine (NH) and hydrogen sulfide (HS) are environmental contaminants that adversely affect human health. Fluorescence-based detection methods for these analytes utilize their nucleophilicity and reducing ability. Therefore, fluorescent sensors capable of detecting and distinguishing hydrazine and HS are highly beneficial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!