Background And Purpose: The Ca(v) 3.2 isoform of T-type Ca(2+) channels (T channels) is sensitized by hydrogen sulfide, a pro-nociceptive gasotransmitter, and also by PKA that mediates PGE(2) -induced hyperalgesia. Here we examined and analysed Ca(v) 3.2 sensitization via the PGE(2) /cAMP pathway in NG108-15 cells that express Ca(v) 3.2 and produce cAMP in response to PGE(2) , and its impact on mechanical nociceptive processing in rats.

Experimental Approach: In NG108-15 cells and rat dorsal root ganglion (DRG) neurons, T-channel-dependent currents (T currents) were measured with the whole-cell patch-clamp technique. The molecular interaction of Ca(v) 3.2 with A-kinase anchoring protein 150 (AKAP150) and its phosphorylation were analysed by immunoprecipitation/immunoblotting in NG108-15 cells. Mechanical nociceptive threshold was determined by the paw pressure test in rats.

Key Results: In NG108-15 cells and/or rat DRG neurons, dibutyryl cAMP (db-cAMP) or PGE(2) increased T currents, an effect blocked by AKAP St-Ht31 inhibitor peptide (AKAPI) or KT5720, a PKA inhibitor. The effect of PGE(2) was abolished by RQ-00015986-00, an EP(4) receptor antagonist. AKAP150 was co-immunoprecipitated with Ca(v) 3.2, regardless of stimulation with db-cAMP, and Ca(v) 3.2 was phosphorylated by db-cAMP or PGE(2) . In rats, intraplantar (i.pl.) administration of db-cAMP or PGE(2) caused mechanical hyperalgesia, an effect suppressed by AKAPI, two distinct T-channel blockers, NNC 55-0396 and ethosuximide, or ZnCl(2) , known to inhibit Ca(v) 3.2 among T channels. Oral administration of RQ-00015986-00 suppressed the PGE(2) -induced mechanical hyperalgesia.

Conclusion And Implications: Our findings suggest that PGE(2) causes AKAP-dependent phosphorylation and sensitization of Ca(v) 3.2 through the EP(4) receptor/cAMP/PKA pathway, leading to mechanical hyperalgesia in rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579291PMC
http://dx.doi.org/10.1111/j.1476-5381.2012.02174.xDOI Listing

Publication Analysis

Top Keywords

ng108-15 cells
16
pge2 -induced
12
mechanical hyperalgesia
12
db-camp pge2
12
pge2
10
cav
9
sensitization cav
8
cav channels
8
mediates pge2
8
-induced mechanical
8

Similar Publications

Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected.

View Article and Find Full Text PDF

Effect of calcium ions on the aggregation of highly phosphorylated tau.

Biochem Biophys Rep

December 2024

Laboratory of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba, 274-8555, Japan.

Tau is typically an axonal protein, but in neurons of brains affected by Alzheimer's disease (AD), aggregation of hyperphosphorylated tau in the somatodendritic compartment causes neuronal death. We have previously demonstrated that tau mRNA is transported within dendrites and undergoes immediate translation and hyperphosphorylation of AD epitopes in response to NMDA receptor stimulation. Although this explains the emergence of hyperphosphorylated tau in dendrites, the relationship between tau hyperphosphorylation and aggregation is not well understood.

View Article and Find Full Text PDF

Revisiting opioid toxicity: Cellular effects of six commonly used opioids.

Scand J Pain

January 2024

The Beijer laboratory, Neuropharmacology and Addiction Research, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.

Objectives: There is an ongoing opioid crisis in the United States where the illicit and non-medical use of prescription opioids is associated with an increasing number of overdose deaths. Few studies have investigated opioid-induced effects on cell viability, and comparative studies are limited. Here, we examine the toxicity of six commonly used opioids: methadone, morphine, oxycodone, hydromorphone, ketobemidone, and fentanyl with respect to mitochondrial and membrane function .

View Article and Find Full Text PDF

Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol.

View Article and Find Full Text PDF

A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against HO exposure; 1 (83.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!