Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In multidomain proteins, interdomain linkers allow an efficient transfer of regulatory information, although it is unclear how the information encoded in the linker structure coins dynamic coupling. Allosteric regulation of NCX proteins involves Ca(2+)-driven tethering of regulatory CBD1 and CBD2 (through a salt bridge network) accompanied by alignment of CBDs and Ca(2+) occlusion at the interface of the two CBDs. Here we investigated "alanine-walk" substitutions in the CBD1-CBD2 linker (501-HAGIFT-506) and found that among all linker residues, only G503 is obligatory for Ca(2+)-induced reorientations of CBDs and slow dissociation of occluded Ca(2+). Moreover, swapping between positions A502 and G503 in the CBD1-CBD2 linker results in a complete loss of slow dissociation of occluded Ca(2+), meaning that dynamic coupling of CBDs requires an exact pose of glycine at position 503. Therefore, accumulating data revealed that position 503 occupied by glycine is absolutely required for Ca(2+)-driven tethering of CBDs, which in turn limits the linker's flexibility and, thus, restricts CBD movements. Because G503 is extremely well conserved in eukaryotic NCX proteins, the information encoded in G503 is essential for dynamic coupling of the two-domain CBD tandem and, thus, for propagation of the allosteric signal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi300739z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!