Rhodium-catalyzed reactions of tertiary propargylic alcohols with methyl aryl- and styryldiazoacetates result in tandem reactions, consisting of oxonium ylide formation followed by [2,3]-sigmatropic rearrangement. This process competes favorably with the standard O-H insertion reaction of carbenoids. The resulting allenes are produced with high enantioselectivity (88-98% ee) when the reaction is catalyzed by the dirhodium tetraprolinate complex, Rh(2)(S-DOSP)(4). Kinetic resolution is possible when racemic tertiary propargylic alcohols are used as substrates. Under the kinetic resolution conditions, the allenes are formed with good diastereoselectivity and enantioselectivity (up to 6.1:1 dr, 88-93% ee), and the unreacted alcohols are enantioenriched to 65-95% ee. Computational studies reveal that the high asymmetric induction is obtained via an organized transition state involving a two-point attachment: ylide formation between the alcohol oxygen and the carbenoid and hydrogen bonding of the alcohol to a carboxylate ligand. The 2,3-sigmatropic rearrangement proceeds through initial cleavage of the O-H bond to generate an intermediate with close-lying open-shell singlet, triplet, and closed-shell singlet electronic states. This intermediate would have significant diradical character, which is consistent with the observation that the 2,3-sigmatropic rearrangement is favored with donor/acceptor carbenoids and more highly functionalized propargylic alcohols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549399PMC
http://dx.doi.org/10.1021/ja3061529DOI Listing

Publication Analysis

Top Keywords

propargylic alcohols
16
donor/acceptor carbenoids
8
tertiary propargylic
8
ylide formation
8
kinetic resolution
8
23-sigmatropic rearrangement
8
alcohols
5
scope mechanistic
4
mechanistic analysis
4
analysis enantioselective
4

Similar Publications

A new sequential deprotonation strategy of dimethyl sulfoxide (DMSO) and propargyl alcohol in the presence of a base was developed for the generation of the α-hydroxyl carbanion, which enables rapid and controllable access to a wide range of valuable highly functionalized furans in one pot from alkynes and aldehydes under transition-metal- and additive-free conditions. Preliminary mechanistic studies revealed the crucial role of the base and DMSO. More importantly, deuterium labeling experiments confirmed the formation of the α-hydroxyl carbanion.

View Article and Find Full Text PDF

Pd/Brønsted Acid Co-catalyzed Dehydrative Coupling of Propargylic Alcohols with Diarylphosphine Oxides.

Org Lett

January 2025

Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People's Republic of China.

An efficient dehydrative coupling of propargylic alcohols with diarylphosphine oxides to construct tetrasubstituted allenylphosphoryl compounds in the presence of a Pd/Brønsted acid co-catalyst has been developed. As a benefit from the use of a Brønsted acid, this reaction could perform under mild conditions with excellent yields, accommodating a wide range of functional groups. The potential utility of this method has also been demonstrated.

View Article and Find Full Text PDF

Photoinduced SF degradation for deoxyfluorination of propargyl alcohols.

Org Biomol Chem

December 2024

National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Deoxyfluorination is one of the most practical methods for introducing fluorine atoms, since hydroxyl groups are commonly found in organic small molecules. Traditional fluorination methods often rely on hazardous fluorinating reagents. Herein, we report the deoxyfluorination of propargyl alcohols using sulfur hexafluoride (SF) as a safe fluorinating agent under photocatalytic conditions.

View Article and Find Full Text PDF

Catalytic Asymmetric Oxidative Coupling between C(sp)-H Bonds and Carboxylic Acids.

J Am Chem Soc

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.

The direct enantioselective functionalization of C(sp)-H bonds in organic molecules could fundamentally transform the synthesis of chiral molecules. In particular, the enantioselective oxidation of these bonds would dramatically change the production methods of chiral alcohols and esters, which are prevalent in natural products, pharmaceuticals, and fine chemicals. Remarkable advances have been made in the enantioselective construction of carbon-carbon and carbon-nitrogen bonds through the C(sp)-H bond functionalization.

View Article and Find Full Text PDF

The Cu(MeCN)PF-catalyzed reaction of 1-(2-hydroxyphenyl)-propargyl alcohols with aryl/alkyl mercaptan and subsequent treatment with KCO only offered 3-(alkylthio)benzofurans, whereas the stoichiometric-exceeding CuI-mediated reaction and subsequent treatment with DIPEA furnished 2-(alkylthiomethyl)benzofurans with high selectivity. The amount of Cu(I) salts plays a key role in selective formation. This unique protocol for the selective construction of the two series of benzofurans containing alkylthio group proved to be suitable for broad substrates and except for aliphatic alkynyl alcohols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!