Hantavirus regulation of type I interferon responses.

Adv Virol

Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA.

Published: August 2012

Hantaviruses primarily infect human endothelial cells (ECs) and cause two highly lethal human diseases. Early addition of Type I interferon (IFN) to ECs blocks hantavirus replication and thus for hantaviruses to be pathogenic they need to prevent early interferon induction. PHV replication is blocked in human ECs, but not inhibited in IFN deficient VeroE6 cells and consistent with this, infecting ECs with PHV results in the early induction of IFNβ and an array of interferon stimulated genes (ISGs). In contrast, ANDV, HTNV, NY-1V and TULV hantaviruses, inhibit early ISG induction and successfully replicate within human ECs. Hantavirus inhibition of IFN responses has been attributed to several viral proteins including regulation by the Gn proteins cytoplasmic tail (Gn-T). The Gn-T interferes with the formation of STING-TBK1-TRAF3 complexes required for IRF3 activation and IFN induction, while the PHV Gn-T fails to alter this complex or regulate IFN induction. These findings indicate that interfering with early IFN induction is necessary for hantaviruses to replicate in human ECs, and suggest that additional determinants are required for hantaviruses to be pathogenic. The mechanism by which Gn-Ts disrupt IFN signaling is likely to reveal potential therapeutic interventions and suggest protein targets for attenuating hantaviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423653PMC
http://dx.doi.org/10.1155/2012/524024DOI Listing

Publication Analysis

Top Keywords

human ecs
12
ifn induction
12
type interferon
8
hantaviruses pathogenic
8
induction phv
8
replicate human
8
ifn
7
hantaviruses
6
ecs
6
induction
6

Similar Publications

The scientific establishment of the Ecological Security Pattern (ESP) is crucial for fostering the synergistic development of ecological and recreational functions, thereby enhancing urban ecological protection, recreational development, and sustainable growth. This study aimed to propose a novel method of constructing ESP considering both ecological and recreational functions, and to reconstruct ESP by weighing the relationship between ecological protection and recreational development. Utilizing Fuzhou City as a case study, a comprehensive application of methodologies including Morphological Spatial Pattern Analysis (MSPA), landscape connectivity analysis, ArcGIS spatial analysis, social network analysis (SNA), and circuit theory is employed to develop both the ESP and the Recreational Spatial Pattern (RSP).

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Engineered hiPSC-derived vascular graft brings hope for thrombosis-free vascular therapy.

Cell Stem Cell

January 2025

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Tissue-engineered vascular conduits (TEVCs) are a promising blood vessel replacement. In a recent publication in Cell Stem Cell, Park et al. developed TEVCs comprised of decellularized human umbilical arteries lined with shear-trained, human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) that resisted thrombosis and exhibited patency upon grafting into the rat inferior vena cava (IVC).

View Article and Find Full Text PDF

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Brain endothelial cell (EC) stress, including that induced by vascular amyloid β (Aβ) deposits in cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), contributes to cerebral blood flow impairment, blood brain barrier (BBB) damage, neurovascular unit dysfunction, microhemorrhages and hypoperfusion, precipitating neurodegeneration and neuroinflammation processes. Epidemiological and experimental evidence suggests that hyperhomocysteinemia (Hhcy) contributes to increasing AD risk as well as CAA pathology. However, the cellular and molecular mechanisms through which Aβ and Hhcy drive EC and BBB dysfunction, whether the molecular effects of these challenges are additive or independent, and possible therapeutic strategies, remain to be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!