Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481317 | PMC |
http://dx.doi.org/10.1074/jbc.M112.389916 | DOI Listing |
Clin Proteomics
June 2024
Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Multiple sclerosis (MS) is a clinically and biologically heterogenous disease with currently unpredictable progression and relapse. After the development and success of neurofilament as a cerebrospinal fluid (CSF) biomarker, there is reinvigorated interest in identifying other markers of or contributors to disease. The objective of this study is to probe the predictive potential of a panel of brain-enriched proteins on MS disease progression and subtype.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2024
Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
Background: Women with adenomyosis are characterized by having defective decidualization, impaired endometrial receptivity and/or embryo-maternal communication, and implantation failure. However, the molecular mechanisms underlying adenomyosis-related infertility remain unknown, mainly because of the restricted accessibility and the difficult preservation of endometrial tissue in vitro. We have recently shown that adenomyosis patient-derived endometrial organoids, maintain disease-specific features while differentiated into mid-secretory and gestational endometrial phase, overcoming these research barriers and providing a robust platform to study adenomyosis pathogenesis and the associated molecular dysregulation related to implantation and pregnancy disorders.
View Article and Find Full Text PDFRespir Res
November 2023
National Reference Center for Rare Pulmonary Diseases, Department of Respiratory Diseases, Hospices Civils de Lyon, Louis Pradel Hospital, 69677, Lyon, France.
Background: Interstitial lung disease (ILD) and pulmonary hypertension (PH) represent the major causes of mortality in systemic sclerosis (SSc). Patients with systemic sclerosis and combined PH and ILD (SSc-PH-ILD) generally have a poor prognosis. Predictors of survival and of potential benefit of treatment are lacking in patients with SSc-PH-ILD.
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
May 2023
Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China.
The cancer-promoting function of the long non-coding RNA (lncRNA) LPP-AS2 has been documented in different cancers. Nonetheless, its role in thyroid carcinoma (THCA) remains unestablished. Reverse transcription quantitative polymerase chain reaction and Western blotting were conducted to estimate the expressions of lncRNA LPP-AS2, miR-132-3p, and OLFM1.
View Article and Find Full Text PDFLife Sci Alliance
May 2023
Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!