Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)-dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471520PMC
http://dx.doi.org/10.1182/blood-2012-04-425595DOI Listing

Publication Analysis

Top Keywords

pstpip2
11
pstpip2 deficiency
8
f-bar domain
8
extramedullary hematopoiesis
8
bone lesions
8
osteoclast development
8
trap expression
8
deficiency mice
4
mice osteopenia
4
osteopenia increased
4

Similar Publications

The complex interaction between the immune system and autoinflammatory disorders highlights the centrality of autoimmune mechanisms in the pathogenesis of autoinflammatory diseases. With the exploration of PSTPIP2, it has been discovered to play an inhibitory role in immune diseases, suggesting its potential utility in the research and treatment of rheumatic diseases. This review outlines the mechanisms of PSTPIP2 in chronic multifocal osteomyelitis (CMO), rheumatoid arthritis (RA), synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome, liver diseases, renal diseases, pressure ulcer sepsis and diabetic obesity.

View Article and Find Full Text PDF

() is an opportunistic pathogen that could cause life-threatening bloodstream infections. The objective of this study was to identify potential diagnostic biomarkers of bloodstream infection. Gene expression dataset GSE33341 was optimized as the discovery dataset, which contained samples from human and mice.

View Article and Find Full Text PDF
Article Synopsis
  • Research into the innate immune system's role in health and disease is growing, highlighting the need for suitable mouse models for reliable in vivo studies.
  • Genetic differences across mouse strains, like BALB/c and C57BL/6, significantly influence how the diseases manifest, particularly relating to immune responses.
  • A study of chronic multifocal osteomyelitis (CMO) in various strains revealed that the genetic background affects disease severity, immune cell activity, and the overall inflammation response.
View Article and Find Full Text PDF

PSTPIP2 protects against alcoholic liver injury and invokes STAT3-mediated suppression of apoptosis.

Biochem Pharmacol

July 2024

Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China. Electronic address:

Alcoholic liver injury (ALI) stands as a prevalent affliction within the spectrum of complex liver diseases. Prolonged and excessive alcohol consumption can pave the way for liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Recent findings have unveiled the protective role of proline serine-threonine phosphatase interacting protein 2 (PSTPIP2) in combating liver ailments.

View Article and Find Full Text PDF

PSTPIP2 ameliorates aristolochic acid nephropathy by suppressing interleukin-19-mediated neutrophil extracellular trap formation.

Elife

February 2024

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.

Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by herbal medicines. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) and neutrophil extracellular traps (NETs) play important roles in kidney injury and immune defense, respectively, but the mechanism underlying AAN regulation by PSTPIP2 and NETs remains unclear. We found that renal tubular epithelial cell (RTEC) apoptosis, neutrophil infiltration, inflammatory factor, and NET production were increased in a mouse model of AAN, while PSTPIP2 expression was low.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!