Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Atrial tissue fibrosis is often an important component of the atrial fibrillation (AF) substrate. Small noncoding microRNAs are important mediators in many cardiac remodeling paradigms. MicroRNA-21 (miR-21) has been suggested to be important in ventricular fibrotic remodeling by downregulating Sprouty-1, a protein that suppresses fibroblast proliferation. The present study examined the potential role of miR-21 in the atrial AF substrate resulting from experimental heart failure after myocardial infarction (MI).
Methods And Results: Large MIs (based on echocardiographic left ventricular wall motion score index) were created by left anterior descending coronary artery ligation in rats. Changes induced by MI versus sham controls were first characterized with echocardiography, histology, biochemistry, and in vivo electrophysiology. Additional MI rats were then randomized to receive anti-miR-21 (KD21) or scrambled control sequence (Scr21) injections into the left atrial myocardium. Progressive left ventricular enlargement, hypocontractility, left atrial dilation, fibrosis, refractoriness prolongation, and AF promotion occurred in MI rats versus sham controls. Atrial tissues of MI rats showed upregulation of miR-21, along with dysregulation of the target genes Sprouty-1, collagen-1, and collagen-3. KD21 treatment reduced atrial miR-21 expression levels in MI rats to values in sham rats, decreased AF duration from 417 (69-1595; median [Q1-Q3]) seconds to 3 (2-16) seconds (8 weeks after MI; P<0.05), and reduced atrial fibrous tissue content from 14.4 ± 1.8% (mean ± SEM) to 4.9 ± 1.2% (8 weeks after MI; P<0.05) versus Scr21 controls.
Conclusions: MI-induced heart failure leads to AF-promoting atrial remodeling in rats. Atrial miR-21 knockdown suppresses atrial fibrosis and AF promotion, implicating miR-21 as an important signaling molecule for the AF substrate and pointing to miR-21 as a potential target for molecular interventions designed to prevent AF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCEP.112.973214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!