The exon 29 c.3535A>T in the alpha-2-macroglobulin gene causing aberrant splice variants is associated with mastitis in dairy cattle.

Immunogenetics

Laboratory of Molecular Genetics and Breeding, Center of Dairy Cattle Research, Shandong Academy of Agricultural Sciences, Industry North Road 159, Jinan 250131, Shandong, People's Republic of China.

Published: November 2012

Alpha-2-macroglobulin (A2M) binds proteases, thereby acting as defense barriers against pathogens in the plasma and tissues of vertebrates and invertebrates. Quantitative real-time polymerase chain reaction (PCR) and the isobaric tags for relative and absolute quantitation method were used to determine the expression levels of A2M mRNA and proteins in mastitis-infected mammary tissues. A2M mRNA and protein expression were significantly higher in mastitis-infected mammary tissues than those in healthy tissues. We also identified 23 novel A2M splice variants in the bovine mammary tissues using reverse transcription PCR combined with clone sequencing. These splice variants predominantly affected the bait region, the inhibitory region, and the thioester region of the protein, which have the functional key roles in inhibiting the proteases of pathogens. Genomic sequencing analysis revealed a nonsynonymous c.3535A>T single-nucleotide polymorphism (SNP) in exon 29, which is located within a putative exonic splice enhancer and may be the reason why the A2M gene produces the aberrant splice variant A2M-AS4. Our findings suggest that the A2M gene can play its role by alternative splicing mechanism and it may be of significance against mastitis. This study provides clues to better understand the function of the bovine A2M gene and the effects of the exonic SNP on the production of aberrant splice variants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00251-012-0639-8DOI Listing

Publication Analysis

Top Keywords

splice variants
16
aberrant splice
12
mammary tissues
12
a2m gene
12
a2m mrna
8
mastitis-infected mammary
8
a2m
7
splice
6
tissues
5
exon c3535a>t
4

Similar Publications

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence.

View Article and Find Full Text PDF

Identification of novel CDH23 heterozygous variants causing autosomal recessive nonsyndromic hearing loss.

Genes Genomics

January 2025

Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, China.

Background: Hearing loss adversely impacts language development, acquisition, and the social and cognitive maturation of affected children. The hearing loss etiology mainly includes genetic factors and environmental factors, of which the former account for about 50-60%.

Objective: This study aimed to investigate the genetic basis of autosomal recessive non-syndromic hearing loss (NSHL) by identifying and characterizing novel variants in the CDH23 gene.

View Article and Find Full Text PDF

Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.).

Theor Appl Genet

January 2025

Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa.

View Article and Find Full Text PDF

Loss of does not affect bone and lean tissue in zebrafish.

JBMR Plus

February 2025

Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States.

Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 () as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of in zebrafish, an emerging model for bone and mineral research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!