Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b6f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428074 | PMC |
http://dx.doi.org/10.1093/jxb/ers156 | DOI Listing |
BMC Genomics
November 2024
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
Colored leaves, a notable horticultural trait, have high research and ornamental value. The evergreen sweet olive (Osmanthus fragrans), one of the top ten traditional flowers in China, has been cultivated for more than two thousand years. However, in recent years, an increasing number of O.
View Article and Find Full Text PDFBurley tobacco, a chlorophyll-deficient mutant with impaired nitrogen use efficiency (NUE), generally requires three to five times more nitrogen fertilization than flue-cured tobacco to achieve a comparable yield, which generates serious environmental pollution and negatively affects human health. Therefore, exploring the mechanisms underlying NUE is an effective measure to reduce environmental pollution and an essential direction for burley tobacco plant improvement. Physiological and genetic factors affecting tobacco NUE were identified using two tobacco genotypes with contrasting NUE in hydroponic experiments.
View Article and Find Full Text PDFCurr Issues Mol Biol
July 2024
Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland.
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode.
View Article and Find Full Text PDFNat Commun
June 2024
Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive.
View Article and Find Full Text PDFAntioxidants (Basel)
May 2024
Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia.
The effects of high-intensity blue light (HIBL, 500/1000 µmol ms, 450 nm) on mutants with high pigment () and low pigment ( levels and cryptochrome 1 (cry1) deficiency on photosynthesis, chlorophylls, phenols, anthocyanins, nonenzymatic antioxidant activity, carotenoid composition, and the expression of light-dependent genes were investigated. The plants, grown under white light for 42 days, were exposed to HIBL for 72 h. The mutant quickly adapted to 500 µmol ms HIBL, exhibiting enhanced photosynthesis, increased anthocyanin and carotenoids (beta-carotene, zeaxanthin), and increased expression of key genes involved in pigment biosynthesis (, , , ) and PSII proteins along with an increase in nonenzymatic antioxidant activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!