Early life adverse events can lead to structural and functional impairments in the prefrontal cortex (PFC). Here, we investigated whether maternal deprivation (MD) alters PFC-dependent executive functions, neurons and astrocytes number and synaptic plasticity in adult male Long-Evans rats. The deprivation protocol consisted of a daily separation of newborn Long-Evans pups from their mothers and littermates 3h/day postnatal day 1-14. Cognitive performances were assessed in adulthood using the temporal order memory task (TMT) and the attentional set-shifting task (ASST) that principally implicates the PFC and the Morris water maze task (WMT) that does not essentially rely on the PFC. The neurons and astrocytes of the prelimbic (PrL) area of the medial PFC (mPFC) were immunolabelled respectively with anti-NeuN and anti-GFAP antibodies and quantified by stereology. The field potentials evoked by electrical stimulation of ventral hippocampus (ventral HPC) were recorded in vivo in the PrL area. In adulthood, MD produced cognitive deficits in two PFC-dependent tasks, the TMT and ASST, but not in the WMT. In parallel, MD induced in the prelimbic area of the medial PFC an upregulation of long-term potentiation (LTP), without any change in the number of neurons and astrocytes. We provide evidence that MD leads in adults to an alteration of the cognitive abilities dependent on the PFC, and to an exaggerated synaptic plasticity in this region. We suggest that this latter phenomenon may contribute to the impairments in the cognitive tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nlm.2012.08.004DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
neurons astrocytes
12
maternal deprivation
8
prefrontal cortex
8
prl area
8
area medial
8
medial pfc
8
pfc
6
cognitive
5
deprivation induces
4

Similar Publications

Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics.

Front Biosci (Landmark Ed)

December 2024

Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.

Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.

View Article and Find Full Text PDF

Segregation-to-integration transformation model of memory evolution.

Netw Neurosci

December 2024

Department of Cognition, Development and Education Psychology, University of Barcelona, Barcelona, Spain.

Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.

View Article and Find Full Text PDF

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Efficacy and working mechanisms of a Go/No-Go task-based inhibition training in smoking: A randomized-controlled trial.

Behav Res Ther

December 2024

Neuronal Plasticity Working Group, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany; Center for Environmental Neuroscience, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany. Electronic address:

Objective: Deficits in inhibitory control contribute to smoking behavior. Inhibitory control training (ICT), which involves repeatedly inhibiting responses to general or substance-related stimuli, shows promise in reducing problematic substance use. This preregistered randomized-controlled trial is the first to investigate the efficacy of general and smoking-specific Go/No-Go task-based ICT on smoking behavior compared to control groups receiving no ICT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!