A major problem in clinical trials of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as cancer therapy is the development of resistance to TRAIL. Therefore, agents that can overcome TRAIL resistance have great therapeutic potential. In this study, we evaluated capsazepine, a TRPV1 antagonist, for its ability to sensitize human colon cancer cells to TRAIL-induced apoptosis. Capsazepine potentiated the effect of TRAIL, as shown by its effect on intracellular esterase activity; activation of caspase-8,-9, and -3; and colony-formation assay. Capsazepine induced death receptors (DRs) DR5 and DR4, but not decoy receptors, at the transcriptional level and in a non-cell-type-specific manner. DR induction was dependent on CCAAT/enhancer-binding protein homologous protein (CHOP), as shown by (a) the induction of CHOP by capsazepine and (b) the abolition of DR- and potentiation of TRAIL-induced apoptosis by CHOP gene silencing. CHOP induction was also reactive oxygen species (ROS)-dependent, as shown by capsazepine's ability to induce ROS and by the quenching of ROS by N-acetylcysteine or glutathione, which prevented induction of CHOP and DR5 and consequent sensitization to TRAIL. Capsazepine's effects appeared to be mediated via JNK, as shown by capsazepine's ability to induce JNK and by the suppression of both CHOP and DR5 activation by inhibition of JNK. Furthermore, ROS sequestration abrogated the activation of JNK. Finally, capsazepine downregulated the expression of various antiapoptotic proteins (e.g., cFLIP and survivin) and increased the expression of proapoptotic proteins (e.g., Bax and p53). Together, our results indicate that capsazepine potentiates the apoptotic effects of TRAIL through downregulation of cell survival proteins and upregulation of death receptors via the ROS-JNK-CHOP-mediated pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731040 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.012 | DOI Listing |
Front Neurosci
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Institute of Hepatology and Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
Background: C-X-C chemokine receptor type 5 (CXCR5)CD8 T cells represent a unique immune subset with dual roles, functioning as cytotoxic cells in persistent viral infections while promoting B cell responses. Despite their importance, the specific role of CXCR5CD8 T cells in chronic hepatitis B (CHB), particularly during interferon-alpha (IFN-α) treatment, is not fully understood. This study aims to elucidate the relationship between CXCR5CD8 T cells and sustained serologic response (SR) in patients undergoing 48 weeks of pegylated IFN-α (peg-IFN-α) treatment for CHB.
View Article and Find Full Text PDFLipids
January 2025
Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Canada.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors represent a novel approach for reducing cholesterol and, accordingly, the burden of atherosclerosis. However, limited data are available regarding the possible effects of PCSK9 inhibitors on atherosclerotic plaque. To evaluate the efficacy of PCSK9 inhibitors in reducing carotid plaque progression in individuals with high-risk carotid atherosclerotic disease.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Cancer heterogeneity, characterized by diverse populations of tumorigenic cells, involves the occurrence of differential phenotypes with variable expressions of receptor tyrosine kinases. Aberrant expressions of mesenchymal-epithelial transition (MET) and recepteur d'origine nantais (RON) receptors contribute to the phenotypic heterogeneity of cancer cells, which poses a major therapeutic challenge. This study aims to develop a dual-targeting antibody-drug conjugate (ADC) that can act against both MET and RON for treating cancers with high phenotypic heterogeneity.
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.
This study suggests a modified model of TNFR1-induced complex I-mediated NFκB signaling. Evaluation of a panel of five tumor cell lines (HCT116-PIK3CAmut, SK-MEL-23, HeLa-RIPK3, HT29, D10) with TRAF2 knockout revealed in two cell lines (HT29, HeLa-RIPK3) a sensitizing effect for death receptor-induced necroptosis and in one cell line (D10) a mild sensitization for TNFR1-induced apoptosis. TRAF2 deficiency inhibited death receptor-induced classical NFκB-mediated production of IL-8 only in a subset of cell lines and only partly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!