Vasectomy is a simple and reliable method of male contraception. A growing number of men after vasectomy request vasectomy reversal due to various reasons. The pregnancy rate is lower than the patency rate after vasovasostomy and the pregnancy rate is time dependent. In this study, we evaluated the influence of reproductive tract obstruction on expression of epididymal proteins and their restoration after patency. Adult male Wistar rats were studied 30, 60 and 120 days after vasectomy, 30 days after vasovasostomy or after sham operations. Two-dimensional gel electrophoresis, mass-spectrometric technique, multidatabase search, Western blotting and real-time PCR were used to analyze the expression regulation of epididymal proteins. Total integrated intensity and total spot area of autoradiograms showed a consistent downward trend with time after obstruction, and this trend remained after patency. The intensity of the autoradiographic spots in three patency groups showed three trends: a downward trend, similar intensity and an upward trend compared with the correspondent obstruction group, respectively. Further verified experiments on human epididymis 2 (HE2), fertilization antigen-1 (FA-1), clusterin and PH20 demonstrated that compared with the correspondent obstruction group, the translation levels of HE2 and the mRNA transcription levels of HE2 showed an upward trend in patency groups, especially in the groups of obstruction for 60 days where the expression levels of HE2 were significantly upregulated after patency (P<0.05). Reproductive tract obstruction provokes a disregulation of gene expression in the epididymis and this disregulation remained after patency. Successful reversal may recover some proteins and the recovery is time dependent. Obstruction differentially alters mRNA transcription of different proteins and the content of proteins seemed to be easier to be influenced than the gene transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739126PMC
http://dx.doi.org/10.1038/aja.2012.64DOI Listing

Publication Analysis

Top Keywords

epididymal proteins
12
levels he2
12
influence reproductive
8
reproductive tract
8
tract obstruction
8
obstruction expression
8
expression epididymal
8
proteins restoration
8
restoration patency
8
pregnancy rate
8

Similar Publications

This study investigates the protective effects of resveratrol (RSV) against heat stress (HS)-induced testicular injury in rats. Climate change has exacerbated heat stress, particularly affecting male fertility by impairing testicular function and sexual behavior. A total of 32 rats were allocated into four experimental groups: control, RSV control, HS control, and RSV + HS.

View Article and Find Full Text PDF

Galectin-1 and galectin-3 in male reproduction - impact in health and disease.

Semin Immunopathol

January 2025

Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.

The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!