The influence of ageing on the passive and active tension and pharmacodynamic characteristics of intramural coronary arteries from 3-month-old and 2-year-old male Wistar rats was investigated using an isometric myograph. The passive vessel wall tension measured in Ca(2+)-free physiological salt solution at L(0) was significantly greater in arteries from old rats (1.46 ± 0.10 Nm(-1), n = 7) than in young rats (1.13 ± 0.13 Nm(-1), n = 6). However, the maximal active tension at L(0) was similar. The spontaneous myogenic tone was increased by age and the vasorelaxation induced by extracellular K(+) was significantly higher in coronary arteries of old rats. The sensitivity (pD(2)) to 5-HT was significantly higher in arteries from old (6.43 ± 0.11, n = 22) than from young rats (6.16 ± 0.08, n = 29). Ketanserin induced a concentration-dependent rightward shift of the 5-HT concentration-response curve in arteries from both young and old rats. The slopes of the regression lines of the Schild plots were not significantly different from unity and the estimated pK(B) values for ketanserin were similar. In conclusion, ageing is associated with changes in passive mechanical characteristics as well as changes in pharmacological properties in rat coronary small arteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000341722 | DOI Listing |
Sci Rep
January 2025
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Due to the unique properties of nanoparticles (NPs), their application has been proposed as an innovative and promising enhanced oil recovery (EOR) technique. They enhance oil recovery by improving EOR mechanisms including decreasing interfacial tension (IFT), wettability alteration to water-wet, and preventing asphaltene precipitation. In this study, FeO@Gelatin NPs were synthesized by a convenient and single-step method and then investigated for EOR purposes for the first time.
View Article and Find Full Text PDFJ Hum Reprod Sci
December 2024
Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India.
Infertility presents multifaceted challenges that encompass both physical and emotional burdens. Yoga, as a comprehensive system of mind-body medicine, serves as an effective intervention for managing male factor infertility, a complex lifestyle disorder with significant psychosomatic elements. This review explores the transformative role of yoga in addressing both the emotional and physical dimensions of infertility.
View Article and Find Full Text PDFBiophys Rev
December 2024
Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain.
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.
View Article and Find Full Text PDFBone fracture ruptures blood vessels and disrupts the bone marrow, the site of new red blood cell production (erythropoiesis). Current dogma holds that bone fracture causes severe hypoxia at the fracture site, due to vascular rupture, and that this hypoxia must be overcome for regeneration. Here, we show that the early fracture site is not hypoxic, but instead exhibits high oxygen tension (> 55 mmHg, or 8%), similar to the red blood cell reservoir, the spleen.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Background And Purpose: TMEM16A chloride channels constitute a depolarising mechanism in arterial smooth muscle cells (SMCs) and contractile cerebral pericytes. TMEM16A pharmacology is incompletely defined. We elucidated the mode of action and selectivity of a recently identified positive allosteric modulator of TMEM16A (PAM_16A) and of a range of TMEM16A inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!