Attention-deficit hyperactivity disorder (ADHD) is associated with deficits in timing functions with, however, inconclusive findings on the underlying neurofunctional deficits. We therefore conducted a meta-analysis of 11 functional magnetic resonance imaging (fMRI) studies of timing in ADHD, comprising 150 patients and 145 healthy controls. Peak coordinates were extracted from significant case-control activation differences as well as demographic, clinical, and methodological variables. In addition, meta-regression analyses were used to explore medication effects. The most consistent deficits in ADHD patients relative to controls were reduced activation in typical areas of timing such as left inferior prefrontal cortex (IFC)/insula, cerebellum, and left inferior parietal lobe. The findings of left fronto-parieto-cerebellar deficits during timing functions contrast with well documented right fronto-striatal dysfunctions for inhibitory and attention functions, suggesting cognitive domain-specific neurofunctional deficits in ADHD. The meta-regression analysis showed that right dorsolateral prefrontal cortex (DLPFC) activation was reduced in medication-naïve patients but normal in long-term stimulant medicated patients relative to controls, suggesting potential normalization effects on the function of this prefrontal region with long-term psychostimulant treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2012.08.003 | DOI Listing |
J Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China.
This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin.
Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Shriners Children's Northern California, Sacramento, California.
Background: Magnetic resonance imaging (MRI) has not been routinely used for infants with brachial plexus birth injury (BPBI); instead, the decision to operate is based on the trajectory of clinical recovery by 6 months of age. The aim of this study was to develop an MRI protocol that can be performed without sedation or contrast in order to identify infants who would benefit from surgery at an earlier age than the age at which that decision could be made clinically.
Methods: This prospective multicenter NAPTIME (Non-Anesthetized Plexus Technique for Infant MRI Evaluation) study included infants aged 28 to 120 days with BPBI from 3 tertiary care centers.
Surg Radiol Anat
January 2025
Department of Ophthalmology & Visual Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
Purpose: To report the normative dimensions of the frontal nerve (FN) on fat-suppressed suppressed gadolinium (fs-gad) enhanced magnetic resonance imaging (MRI).
Method: A retrospective cohort study of patients who underwent coronal fs-gad T1-weighted MRI. Orbits were excluded if there was unilateral or bilateral pathology of the FN or optic nerve sheath (ONS), incomplete MRI sequences, poor image quality or indiscernible FN on radiological assessment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!