The influence of delayed compressive stress on TGF-β1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways.

Biomaterials

State Key Laboratory of Oral Diseases, West China College of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Published: November 2012

Mechanical stimuli play important roles in regulating chondrogenic differentiation, but seldom studies have focused on when and how mechanical stimuli should be initiated. We have previously shown that Col2α1 mRNA was increased by delayed dynamic compressive stress initiated at the 8th day of chondrogenic culture. The current work is to further study the possibility of using delayed mechanical stress to relay chondrogenesis initiated by exogenous TGF-β1. Mechanical stimulation was delivered from day 8 to day 14 of chondrogenic culture. It showed that delayed compressive stress not only stimulated gene expression and protein synthesis of chondrocyte-specific markers, but also stimulated the endogenous TGF-β1 gene transcription, protein expression and the subsequent activation even when exogenous TGF-β1 was discontinued. Furthermore, mechanical stress also promoted protein phosphorylation and nuclear translocation of Smad2/3, the TGF-β1 downstream effectors. Inhibition TGF-β with SB431542 significantly affected the stress-induced chondrogenic gene expression. In addition, phosphorylated-p38 and RhoB were upregulated by delayed loading in a TGF-β-related manner. Phosphorylated-ERK1/2 and Wnt7a were also increased, but in a TGF-β-independent way. It indicates that delayed compressive stress can be used as an effective substitute for TGF-β1 supplement in inducing chondrogenic differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2012.08.019DOI Listing

Publication Analysis

Top Keywords

compressive stress
16
delayed compressive
12
chondrogenic differentiation
12
mechanical stimuli
8
day chondrogenic
8
chondrogenic culture
8
mechanical stress
8
exogenous tgf-β1
8
gene expression
8
stress
6

Similar Publications

Diet is one of a limited set of key ecological parameters defining primate species. A detailed understanding of dental functional correlates with primate diet is a key component for accurate dietary inference in fossil primates. Although considerable effort has been devoted to understanding post-canine dental function, incisor function remains poorly understood.

View Article and Find Full Text PDF

Study Design: This study employed a patient-specific finite element model.

Purpose: To quantify the effect of anterior and posterior surgical approaches on adjacent segment biomechanics of the patient-specific spine and spinal cord.

Overview Of Literature: Adjacent segment degeneration (ASD) is a well-documented complication following cervical fusion, typically resulting from accelerated osteoligamentous deterioration and subsequent symptomatic neural compression.

View Article and Find Full Text PDF

Fracture Resistance of Chairside CAD/CAM Lithium Disilicate Partial and Full Coverage Crowns and Veneers for Maxillary Canines.

Oper Dent

January 2025

Nathaniel C Lawson, DDS, PhD, director of Master of Science in Dental Biomaterials program and associate professor, Department of Clinical and Community Sciences, University of Alabama at Birmingham School of Dentistry, Birmingham, AL, USA.

Objective: This study aimed to assess the fracture resistance of chairside computer assisted design and computer assisted manufacturing (CAD-CAM) lithium disilicate partial and full-coverage crowns and veneers for maxillary canines.

Methods And Materials: Forty-eight restorations for maxillary right canines (12 per group) were designed as follows: (1) partial crown with finish line in the upper middle third; (2) partial crown with finish line in the lower middle third; (3) traditional labial veneer; and (4) traditional full-coverage crown. Restorations were fabricated out of lithium disilicate (Amber Mill, Hassbio) using a chairside CAD-CAM system (Cerec Dentsply Sirona).

View Article and Find Full Text PDF

Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.

View Article and Find Full Text PDF

Hydrophobic dual-polymer-reinforced graphene composite aerogel for efficient water-oil separation.

RSC Adv

January 2025

Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 P. R. China

Addressing the environmental challenges posed by oil spills and industrial wastewater is critical for sustainable development. Graphene aerogels demonstrate significant potential as highly efficient adsorbents due to their high specific surface area, excellent structural tunability and outstanding chemical stability. Among available fabrication methods, the hydrothermal self-assembly technique stands out for its low cost, high tunability and good scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!