Compartmentalization and regulation of arylsulfatase activities in Streptomyces sp., Microbacterium sp. and Rhodococcus sp. soil isolates in response to inorganic sulfate limitation.

Microbiol Res

Nantes University, PRES UNAM, Campus de la Courtaisière-IUT, UMR CNRS 6144 GEPEA, CBAC, 18 Bvd Gaston Defferre, 85035 La Roche sur Yon cedex, France.

Published: January 2013

Arylsulfatases allow microorganisms to satisfy their sulfur (S) requirements as inorganic sulfate after sulfate ester hydrolysis. Our objectives were to investigate the arylsulfatase activities among soil isolates, especially Streptomyces sp., Microbacterium sp. and Rhodococcus sp., because such investigations are limited for these bacteria, which often live in sulfate-limited conditions. Physiological and biochemical analyses indicated that these isolates possessed strong specific arylsulfatase activities ranging from 6 to 8 U. Moreover, for Streptomyces sp., an arylsulfatase localization study revealed 2 forms of arylsulfatases. A first form was located in the membrane, and a second form was located in the intracellular compartment. Both arylsulfatases had different patterns of induction. Indeed, the intracellular arylsulfatase was strictly induced by inorganic sulfate limitation, whereas the membrane arylsulfatase was induced both by substrate presence or S demand independently. For Microbacterium and Rhodococcus isolates, only a membrane arylsulfatase was found. Consequently, our results suggest the presence of a previously undescribed arylsulfatase in these microorganisms that allows them to develop an alternative strategy to fulfill their S requirements compared to bacteria previously studied in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2012.08.001DOI Listing

Publication Analysis

Top Keywords

arylsulfatase activities
12
microbacterium rhodococcus
12
inorganic sulfate
12
arylsulfatase
8
streptomyces microbacterium
8
soil isolates
8
sulfate limitation
8
form located
8
membrane arylsulfatase
8
compartmentalization regulation
4

Similar Publications

BRAF-activated ARSI suppressed EREG-mediated ferroptosis to promote BRAF (mutant) papillary thyroid carcinoma progression and sorafenib resistance.

Int J Biol Sci

January 2025

Department of Thyroid and Hernia Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou City, Fujian Province 350001, China.

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAF mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAF PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients.

View Article and Find Full Text PDF

Background/aim: Breast cancer is mostly affected by estrogen, which promotes proliferation, tumorigenesis, and cancer progression. Estrogen sulfotransferase (SULT1E1) catalyzes sulfation to inactivate estrogens, whereas steroid sulfatase (STS) catalyzes estrogen sulfate hydrolysis to activate estrogens in breast cancer cells. Three major organosulfur compounds in garlic (Allium sativum L.

View Article and Find Full Text PDF

Relative Frequency of Metachromatic Leukodystrophy in Egypt: A Reference Laboratory Report.

Front Biosci (Schol Ed)

December 2024

Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt.

Background: Metachromatic leukodystrophy (MLD) is an autosomal recessive hereditary neurodegenerative disease caused by a deficiency in arylsulfatase A (ARSA) activity and belongs to the group of lysosomal storage diseases. A biochemical diagnosis of MLD is based on determining the residual ARSA activity in leukocytes, skin fibroblasts, and urine. This study documents our biochemical experience and estimates the relative frequency of MLD over 21 years (2001-2022).

View Article and Find Full Text PDF

Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.

View Article and Find Full Text PDF

Clinical and molecular characteristics of 20 Chinese probands with Mucolipidosis type II and III alpha/beta.

BMC Pediatr

December 2024

Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.

Background: Mucolipidosis (ML) II and III alpha/beta are lysosomal disorders caused by mutations in the GNPTAB gene which encodes the alpha and beta subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase.

Method: To explore the clinical and molecular characteristics of the 20 ML II and III alpha/beta patients, clinical data was collected and GNPTAB gene was analyzed by nest PCR and direct Sanger-sequencing. The activity of several lysosomal enzymes was measured in the plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!