Arylsulfatases allow microorganisms to satisfy their sulfur (S) requirements as inorganic sulfate after sulfate ester hydrolysis. Our objectives were to investigate the arylsulfatase activities among soil isolates, especially Streptomyces sp., Microbacterium sp. and Rhodococcus sp., because such investigations are limited for these bacteria, which often live in sulfate-limited conditions. Physiological and biochemical analyses indicated that these isolates possessed strong specific arylsulfatase activities ranging from 6 to 8 U. Moreover, for Streptomyces sp., an arylsulfatase localization study revealed 2 forms of arylsulfatases. A first form was located in the membrane, and a second form was located in the intracellular compartment. Both arylsulfatases had different patterns of induction. Indeed, the intracellular arylsulfatase was strictly induced by inorganic sulfate limitation, whereas the membrane arylsulfatase was induced both by substrate presence or S demand independently. For Microbacterium and Rhodococcus isolates, only a membrane arylsulfatase was found. Consequently, our results suggest the presence of a previously undescribed arylsulfatase in these microorganisms that allows them to develop an alternative strategy to fulfill their S requirements compared to bacteria previously studied in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2012.08.001 | DOI Listing |
Int J Biol Sci
January 2025
Department of Thyroid and Hernia Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou City, Fujian Province 350001, China.
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAF mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAF PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients.
View Article and Find Full Text PDFAnticancer Res
January 2025
Faculty of Pharmacy, Iryo Sosei University, Fukushima, Japan.
Background/aim: Breast cancer is mostly affected by estrogen, which promotes proliferation, tumorigenesis, and cancer progression. Estrogen sulfotransferase (SULT1E1) catalyzes sulfation to inactivate estrogens, whereas steroid sulfatase (STS) catalyzes estrogen sulfate hydrolysis to activate estrogens in breast cancer cells. Three major organosulfur compounds in garlic (Allium sativum L.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt.
Background: Metachromatic leukodystrophy (MLD) is an autosomal recessive hereditary neurodegenerative disease caused by a deficiency in arylsulfatase A (ARSA) activity and belongs to the group of lysosomal storage diseases. A biochemical diagnosis of MLD is based on determining the residual ARSA activity in leukocytes, skin fibroblasts, and urine. This study documents our biochemical experience and estimates the relative frequency of MLD over 21 years (2001-2022).
View Article and Find Full Text PDFMetabolites
November 2024
Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.
View Article and Find Full Text PDFBMC Pediatr
December 2024
Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
Background: Mucolipidosis (ML) II and III alpha/beta are lysosomal disorders caused by mutations in the GNPTAB gene which encodes the alpha and beta subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase.
Method: To explore the clinical and molecular characteristics of the 20 ML II and III alpha/beta patients, clinical data was collected and GNPTAB gene was analyzed by nest PCR and direct Sanger-sequencing. The activity of several lysosomal enzymes was measured in the plasma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!