Background: Peripheral venous blood gas (pVBG) analysis in replacement of arterial blood gas (ABG) is limited by the unpredictable differences between arterial and venous values, especially for PCO2 and pH (ΔPCO2 and ΔpH).
Objectives: We hypothesized that, using the theoretical relationship linking SvO2 and blood flow, we could diminish the effect of local circulatory conditions on ΔPCO2 and ΔpH and thereby increase pVBG validity.
Methods: This was a prospective cross-sectional study performed in emergency patients requiring a blood gas analysis in which ABG and pVBG were performed simultaneously. The data of 50 randomly selected patients (model group) were used for developing two equations to correct PvCO2 and pHv according to the peripheral SvO2 (SpvO2) level. The formulas derived were PvCO2cor = PvCO2 - 0.30 × (75 - SpvO2), and pHvcor = pHv + 0.001 × (75 - SpvO2). The validity of the corrected values was then tested on the remaining population (validation group).
Results: There were 281 patients included in the study, mainly for dyspnea. ΔPCO2 and ΔpH were strongly correlated with SpvO2 (r(2) = 0.62 and r(2) = 0.53, respectively, p < 0.001). Using the data of the model group, we developed equations that we applied on the validation group. We found that the corrected values were more valid than the raw values for detecting a PaCO2 > 45 mm Hg (AUC ROC = 0.96 ± 0.01 vs. 0.89 ± 0.02, p < 0.001), a PaCO2 < 35 mm Hg (AUC = 0.95 ± 0.02 vs. 0.84 ± 0.03, p < 0.001), a pHa < 7.35 (AUC = 0.97 ± 0.01 vs. 0.95 ± 0.02, p < 0.05), or a pHa > 7.45 (AUC = 0.91 ± 0.02 vs. 0.81 ± 0.04, p < 0.001).
Conclusions: The variability of ΔPCO2 and ΔpH is significantly lowered when the venous values are corrected according to the SpvO2 value, and pVBG is therefore more accurate and valid for detecting an arterial abnormality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jemermed.2012.07.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!