Electrokinetic properties of α-Fe(2)O(3) (hematite) nanoparticle monolayers on mica were thoroughly characterized using the streaming potential method. Hematite suspensions were obtained by acidic hydrolysis of ferric chloride. The average size of particles (hydrodynamic diameter), determined by dynamic light scattering (DLS) and AFM, was 22 nm (pH=5.5, I=10(-2)M). The hematite monolayers on mica were produced under diffusion-controlled transport from the suspensions of various bulk concentration. The monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express zeta potential of hematite monolayers, determined by the streaming potential measurements, in terms of the particle coverage. Such dependencies, obtained for various pH, were successfully interpreted in terms of the three-dimensional electrokinetic model. A universal calibrating graph was produced enabling one to determine hematite monolayer coverage from the measured value of the streaming potential. The influence of the ionic strength, varied between 10(-4) and 10(-2)M, on the zeta potential of hematite monolayers was also studied. Additionally, the stability of monolayers (desorption kinetics) was determined under in situ conditions using the streaming potential method. Our experimental data prove that it is feasible to produce uniform and stable hematite particle monolayers of well-controlled coverage. Such monolayers may find practical applications as universal substrates for protein immobilization (biosensors) and in electrocatalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.06.047DOI Listing

Publication Analysis

Top Keywords

streaming potential
16
monolayers mica
12
hematite monolayers
12
hematite
8
hematite nanoparticle
8
monolayers
8
nanoparticle monolayers
8
potential method
8
monolayer coverage
8
zeta potential
8

Similar Publications

Background: During the COVID-19 pandemic, governments across the world implemented processes and policies to limit the spread of COVID-19, especially in long-term care (LTC) homes. This led to changes in technology use for persons living in LTC homes, their families and friends, as well as the paid workforce dedicated to caring for them.

Objective: The study describes the role of technology and its impact on the experiences of LTC staff working in northern and rural areas in Western Canada during COVID-19.

View Article and Find Full Text PDF

Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.

View Article and Find Full Text PDF

Objectives: To report a case of adult-onset non-dystrophic myotonia complicated by recurrent episodes of laryngospasm.

Methods: The patient is a 35-year-old man who was admitted to our hospital for recurrent episodes of apnea requiring endotracheal intubation with mechanical ventilation. He underwent extensive evaluation, including EMG, laryngoscopy, muscle biopsy, and genetic testing, which revealed a diagnosis of non-dystrophic myotonia.

View Article and Find Full Text PDF

Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.

Fluids Barriers CNS

December 2024

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.

The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space.

View Article and Find Full Text PDF

Closed-Loop Deep Brain Stimulation Platform for Translational Research.

Neuromodulation

December 2024

Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Academy for Engineering and Technology, Fudan University, Shanghai, China. Electronic address:

Objective: This study aims to facilitate the translation of innovative closed-loop deep brain stimulation (DBS) strategies from theory to practice by establishing a research platform. The platform addresses the challenges of real-time stimulation artifact removal, low-latency feedback stimulation, and rapid translation from animal to clinical experiments.

Materials And Methods: The platform comprises hardware for neural sensing and stimulation, a closed-loop software framework for real-time data streaming and computation, and an algorithm library for implementing closed-loop DBS strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!