Penicillium marneffei is an opportunistic pathogen of humans and displays a temperature dependent dimorphic transition. Like many fungi, exogenous DNA introduced by DNA mediated transformation is integrated randomly into the genome resulting in inefficient gene deletion and position-specific effects. To enhance successful gene targeting, the consequences of perturbing components of the non-homologous end joining recombination pathway have been examined. The deletion of the KU70 and LIG4 orthologs, pkuA and ligD, respectively, dramatically enhanced the observed homologous recombination frequency leading to efficient gene deletion. While ΔpkuA was associated with reduced genetic stability over-time, ΔligD represents a suitable recipient strain for downstream applications and combined with a modified Gateway™ system for the rapid generation of gene deletion constructs, this represents an efficient pipeline for characterizing gene function in P. marneffei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2012.08.003 | DOI Listing |
Life (Basel)
December 2024
Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, 80131 Naples, Italy.
MyD88 deficiency is a rare inborn error of immunity (IEI) characterized by susceptibility to pyogenic infections without overt signs of inflammation. Half of the reported patients belong to Roma descent, an itinerant ethnic group living mostly in Europe, with an increased risk of childhood mortality due to limited access to healthcare services. We describe three unrelated patients from the Campania region in Italy with MyD88 deficiency, all belonging to Roma descent and displaying severe or recurrent infections in early infancy.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
We analyzed the transcriptome data of wildtype and estrogen receptor β knockout () rat ovaries during the early postnatal period and detected remarkable changes in epigenetic regulators and transcription factors. Compared with postnatal day (PD) 4.5 ovaries, PD 6.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Anderson-Fabry (or Fabry) disease is a rare lysosomal storage disorder caused by a functional deficiency of the enzyme alpha-galactosidase A. The partial or total defect of this lysosomal enzyme, which is caused by variants in the gene, leads to the accumulation of glycosphingolipids, mainly globotriaosylceramide in the lysosomes of different cell types. The clinical presentation of Fabry disease is multisystemic and can vary depending on the specific genetic variants associated with the disease.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, University Rennes, 35000 Rennes, France.
The insertion/deletion (I/D) polymorphism in , the gene encoding the angiotensin-converting enzyme (ACE), has been suggested as a genetic variation that can influence exercise performance and risk of injury in elite athletes. The I allele has been associated with enhanced endurance performance and with reduced inflammation, while the D allele has been associated with improved performance in strength and power activities. However, the role of this genetic variant in the incidence of non-contact injury is underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!