Synthetic peptide-acrylate surface for self-renewal of human retinal progenitor cells.

Tissue Eng Part C Methods

Schepens Eye Research Institute, Massachusetts Eye and Ear Foundation, an affiliate of Harvard Medical School, Boston, Massachusetts 02114, USA.

Published: April 2013

Human retinal progenitor cells (hRPCs), isolated from fetal retina, require extracellular matrix proteins such as fibronectin or laminin for successful attachment and self-renewal in vitro. Here we have shown that a novel synthetic vitronectin-mimicking surface supports self-renewal and multipotency of hRPCs in a chemically defined culture system. The morphology, adhesion, and proliferation of hRPC were equivalent on a novel vitronectin-mimicking surface (Synthemax) compared to a fibronectin-coated surface. When evaluated using real-time polymerase chain reaction, Western blotting, and flow cytometry, both surfaces maintained self-renewal of hRPCs, as shown by similar expression levels of Sox2, Nestin, cMyc, Klf4, and Pax6, with no change in integrin beta1 and integrin alpha5 expression. We suggest that the use of synthetic, xeno-free surfaces such as Synthemax will be useful for basic research studies, as well as development of translational strategies aimed at using stem cell transplantation to treat disease.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2012.0217DOI Listing

Publication Analysis

Top Keywords

human retinal
8
retinal progenitor
8
progenitor cells
8
vitronectin-mimicking surface
8
synthetic peptide-acrylate
4
surface
4
peptide-acrylate surface
4
self-renewal
4
surface self-renewal
4
self-renewal human
4

Similar Publications

DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.

Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.

Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.

View Article and Find Full Text PDF

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

Background: Lens implantation becomes a major concern in patients lacking posterior capsular support, but various methods are available for rehabilitation. In such patients, scleral-fixated intraocular lens (SFIOL) implantation is preferred due to its fewer complications and better simulation of the natural lens position. In this non-randomized retrospective clinical study, we aimed to assess visual outcomes after sutureless SFIOL implantation in aphakic patients and factors affecting visual outcomes.

View Article and Find Full Text PDF

Autoimmune retinopathy (AIR) is a rare, potentially blinding retinal disease that remains a challenging condition to manage when resistant to conventional immune-modulatory approaches. We report clinical and electrophysiological improvement in a 49-year-old patient who underwent an autologous hematopoietic stem cell transplant (aHSCT) for thymoma-associated AIR after experiencing progressive disease despite receiving periocular and systemic steroids, mycophenolate mofetil, baricitinib, tacrolimus, bortezomib, rituximab, plasmapheresis, and intravenous immunoglobulin. The aHSCT had two stages: (i) peripheral blood stem cell harvest following mobilization with cyclophosphamide and granulocyte colony-stimulating factor, and (ii) conditioning regimen with plasmapheresis, rituximab, cyclophosphamide, and anti-thymocyte globulin high-dose therapy, followed by autologous hematopoietic cell infusion of 5.

View Article and Find Full Text PDF

Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!