Background: Quantitative analysis of changes in dendritic spine morphology has become an interesting issue in contemporary neuroscience. However, the diversity in dendritic spine population might seriously influence the result of measurements in which their morphology is studied. The detection of differences in spine morphology between control and test group is often compromised by the number of dendritic spines taken for analysis. In order to estimate the impact of dendritic spine diversity we performed Monte Carlo simulations examining various experimental setups and statistical approaches. The confocal images of dendritic spines from hippocampal dissociated cultures have been used to create a set of variables exploited as the simulation resources.
Results: The tabulated results of simulations given in this article, provide the number of dendritic spines required for the detection of hidden morphological differences between control and test groups in terms of spine head-width, length and area. It turns out that this is the head-width among these three variables, where the changes are most easily detected. Simulation of changes occurring in a subpopulation of spines reveal the strong dependence of detectability on the statistical approach applied. The analysis based on comparison of percentage of spines in subclasses is less sensitive than the direct comparison of relevant variables describing spines morphology.
Conclusions: We evaluated the sampling aspect and effect of systematic morphological variation on detecting the differences in spine morphology. The results provided here may serve as a guideline in selecting the number of samples to be studied in a planned experiment. Our simulations might be a step towards the development of a standardized method of quantitative comparison of dendritic spines morphology, in which different sources of errors are considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468369 | PMC |
http://dx.doi.org/10.1186/1471-2105-13-213 | DOI Listing |
Neural Regen Res
January 2025
The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
Perinatal exposure to infection/inflammation is highly associated with neural injury, and subsequent impaired cortical growth, disturbances in neuronal connectivity, and impaired neurodevelopment. However, our understanding of the pathophysiological substrate underpinning these changes in brain structure and function is limited. The objective of this review is to summarize the growing evidence from animal trials and human cohort studies that suggest exposure to infection/ inflammation during the perinatal period promotes regional impairments in neuronal maturation and function, including loss of high-frequency electroencephalographic activity, and reduced growth and arborization of cortical dendrites and dendritic spines resulting in reduced cortical volume.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China. Electronic address:
Ethnopharmacological Relevance: Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research.
Aim Of The Study: This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.
The effect of Constraint-induced movement therapy (CIMT) or Intermittent theta-burst stimulation (iTBS) alone is limited in improving motor function after a stroke. In this study, we explored the efficacy and possible mechanisms in combination of CIMT and iTBS through behavioral evaluation, RNA sequencing, Golgi staining, transmission electronic microscope (TEM), high-performance liquid chromatography (HPLC), western blotting (WB) and immunofluorescence. Firstly, we observed that combination therapy is safe and effective, and it can significantly reduce the number of immature dendritic spines and increase the number of functional dendritic spines, the amount of glutamate (Glu) and the expression of Glu1 receptor (Glu1R).
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.
View Article and Find Full Text PDFPLoS One
January 2025
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!