DNA demethylation by TDG.

Epigenomics

Cancer Biology Program, Epigenetics & Progenitor Cells Program, Fox Chase Cancer Center, PA 19111, USA.

Published: August 2012

DNA methylation has long been considered a very stable DNA modification in mammals that could only be removed by replication in the absence of remethylation - that is, by mere dilution of this epigenetic mark (so-called passive DNA demethylation). However, in recent years, a significant number of studies have revealed the existence of active processes of DNA demethylation in mammals, with important roles in development and transcriptional regulation, allowing the molecular mechanisms of active DNA demethylation to be unraveled. In this article, we review the recent literature highlighting the prominent role played in active DNA demethylation by base excision repair and especially by TDG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600859PMC
http://dx.doi.org/10.2217/epi.12.36DOI Listing

Publication Analysis

Top Keywords

dna demethylation
20
active dna
8
dna
7
demethylation tdg
4
tdg dna
4
dna methylation
4
methylation long
4
long considered
4
considered stable
4
stable dna
4

Similar Publications

DNA damage and its links to neuronal aging and degeneration.

Neuron

January 2025

Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage.

View Article and Find Full Text PDF

This study investigated whether the neddylation inhibitor MLN4924 induces aberrant DNA methylation patterns in acute myeloid leukemia and contributes to the reactivation of tumor suppressor genes. DNA methylation profiles of Kasumi-1 and KU812 acute myeloid leukemia cell lines before and after MLN4924 treatment were generated using the 850K Methylation BeadChip. RNA sequencing was used to obtain transcriptomic profiles of Kasumi-1 cells.

View Article and Find Full Text PDF

Pathogenic fungi represent a diverse group of eukaryotic microorganisms that significantly impact human health and agriculture. In recent years, the role of epigenetic modifications, particularly histone modifications, in fungal pathobiology has emerged as a prominent area of interest. Among these modifications, methylation of histone H3 at lysine-4 (H3K4) has garnered considerable attention for its implications in regulating gene expression associated with diverse cellular processes.

View Article and Find Full Text PDF

Vitamin C and MEK Inhibitor PD0325901 Synergistically Promote Oligodendrocytes Generation by Promoting DNA Demethylation.

Molecules

December 2024

State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

DNA methylation and demethylation are key epigenetic events that regulate gene expression and cell fate. DNA demethylation via oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is typically mediated by TET (ten-eleven translocation) enzymes. The 5hmC modification is considered an intermediate state of DNA demethylation; it is particularly prevalent in the brain and is believed to play a role in the development of many cell types in the brain.

View Article and Find Full Text PDF

Epigenetic dysregulation is a common feature of cancer. Promoter demethylation of tumor-promoting genes and global DNA hypomethylation may trigger tumor progression. Epigenetic changes are unstable; thus, research has focused on detecting remedies that target epigenetic regulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!