Synthesis and biological evaluation of novel pyrimido[4,5-b]quinoline-2,4- dione derivatives as MDM2 ubiquitin ligase inhibitors.

Med Chem

ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.

Published: June 2013

A series of pyrimido[4,5-b]quinoline-2,4-dione derivatives was synthesized and evaluated for their cytotoxic activities in vitro against five human cancer cell lines. Selected compounds were tested for their MDM2 E3 ligase inhibitory activities and p53-MDM2 binding inhibitory activities. Among tested compounds, four sulfur-containing compounds (4-7) displayed enhanced cytotoxic activities and better MDM2 E3 ligase inhibitoty activities in comparison with that of HLI98c. Three compounds (4-6) showed better p53-MDM2 binding inhibitory potency with IC50 values ranging from 1.3 μM to 9.0 μM.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406411309040012DOI Listing

Publication Analysis

Top Keywords

cytotoxic activities
8
mdm2 ligase
8
inhibitory activities
8
p53-mdm2 binding
8
binding inhibitory
8
activities
5
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel pyrimido[45-b]quinoline-24-
4

Similar Publications

l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.

View Article and Find Full Text PDF

Cytotoxic and Noncytotoxic Steroidal Constituents of .

J Nat Prod

January 2025

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

(-)-Cryptanoside A () was identified previously as a major cytotoxic component of the stems of collected in Laos, which mediates its activity by targeting Na/K-ATPase (NKA), with hydrogen bonds formed between its 11- and 4'-hydroxy groups and NKA being observed in its docking profile. In a continuing investigation, and its 17-epimer, (-)-17--cryptanoside A (), and the new (+)-2-hydroxyandrosta-4,6-diene-3-one-17-carboxylic acid () and the known (+)-2,21-dihydroxypregna-4,6-diene-3,20-dione or 2-hydroxy-6,7-didehydrocortexone () pregnane-type steroids were isolated from . In addition, (-)-11,4'-di--acetylcryptanoside A () has been synthesized from the acetylation of .

View Article and Find Full Text PDF

Background: Trichoderma species, known as biocontrol agents against plant diseases, contain diverse compounds, especially terpenoids, with various bioactivities. To facilitate the exploration of bioactive secondary metabolites of Trichoderma harzianum NTU2180, the OSMAC approach MS/MS molecular networking was applied in the current study.

Results: The feature-based molecular networking (FBMN) analysis showed that T.

View Article and Find Full Text PDF

Total synthesis of linear lipodepsipeptide kavaratamide A and its C25-epimer.

Org Biomol Chem

January 2025

Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.

We report the stereoselective total synthesis of kavaratamide A, a linear lipodepsipeptide from the cyanobacterium (collected in Kavaratti, India), and its unnatural C25-epimer. The convergent approach employs Keck asymmetric allylation to construct the chiral β-hydroxy carboxylic acid fragment [(3)-HDA; 3-hydroxydecanoic acid], while the peptide unit was assembled from L-Val, -Me-L-Ala, ()-Hiva, and ()-Pr--Me-pyr using well-orchestrated coupling methods to prevent racemization. Modifications to the Keck allylation conditions enabled the synthesis of the C25-epimer with good yield.

View Article and Find Full Text PDF

Flavonoids and Kavalactones Isolated from Seeds of Alpinia katsumadai Hayata. and Their Cytotoxic Activities.

Chem Biodivers

January 2025

Guizhou Medical University, School of Pharmaceutical Sciences, University Town, Gui'an New District, 550025, Guiyang, CHINA.

An unrevealed dihydroflavone-monoterpene conjugate (1), two unrevealed kavalactones (2-3, including one with an uncommon side chain), and thirteen previously identified compounds (4-16) were extracted from Alpinia katsumadai Hayata. seeds. The two-dimension structures of the new compounds were authenticated utilizing HRESIMS as well as NMR spectral analysis, while their absolute chiral configurations were ascertained either by correlating the experimental and simulated values of electronic circular dichroism (ECD) patterns or conducting X-ray diffraction experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!