A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks]. | LitMetric

[Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks].

Ying Yong Sheng Tai Xue Bao

State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources/Ministry of Agriculture Key Laboratory of Tropical Agro-environment/Institute of Tropical & Subtropical Ecology, South China Agricultural University, Guangzhou 510642, China.

Published: May 2012

Common mycorrhizal networks (CMNs) are the underground conduits of nutrient exchange between plants. However, whether the CMNs can serve as the underground conduits of chemical communication to transfer the disease resistance signals between plants are unknown. By inoculating arbuscular mycorrhizal fungus (AMF) Glomus mosseae to establish CMNs between 'donor' and 'receiver' tomato plants, and by inoculating Alternaria solani, the causal agent of tomato early blight disease, to the 'donor' plants, this paper studied whether the potential disease resistance signals can be transferred between the 'donor' and 'receiver' plants roots. The real time RT-PCR analysis showed that after inoculation with A. solani, the AMF-inoculated 'donor' plants had strong expression of three test defense-related genes in roots, with the transcript levels of the phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX) and chitinase (PR3) being significantly higher than those in the roots of the 'donor' plants only inoculated with A. solani, not inoculated with both A. solani and AMF, and only inoculated with AMF. More importantly, in the presence of CMNs, the expression levels of the three genes in the roots of the 'receiver' plants were significantly higher than those of the 'receiver' plants without CMNs connection, with the connection blocking, and with the connection but the 'donor' plants not A. solani-inoculated. Compared with the control (without CMNs connection), the transcript level of the PAL, LOX and PR3 in the roots of the 'receiver' plants having CMNs connection with the 'donor' plants was 4.2-, 4.5- and 3.5-fold higher, respectively. In addition, the 'donor' plants activated their defensive responses more quickly than the 'receiver' plants (18 and 65 h vs. 100 and 140 h). These findings suggested that the disease resistance signals produced by the pathogen-induced 'donor' tomato plant roots could be transferred to the 'receiver' plant roots through CMNs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

'donor' plants
24
'receiver' plants
20
plants
15
plants cmns
12
disease resistance
12
resistance signals
12
cmns connection
12
'donor'
9
roots
8
tomato plants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!