Hypoxia-inducible factor-1 (HIF-1) is a well-studied transcription factor mediating cellular adaptation to hypoxia. It also plays a crucial role under normoxic conditions, such as in inflammation, where its regulation is less well understood. The 3'-untranslated region (UTR) of HIF-1α mRNA is among the most conserved UTRs in the genome, hinting toward posttranscriptional regulation. To identify potential trans factors, we analyzed a large compilation of expression data. In contrast to its known function of being a negative regulator, we found that tristetraprolin (TTP) positively correlates with HIF-1 target genes. Mathematical modeling predicts that an additional level of posttranslational regulation of TTP can explain the observed positive correlation between TTP and HIF-1 signaling. Mechanistic studies revealed that TTP indeed changes its mode of regulation from destabilizing to stabilizing HIF-1α mRNA upon phosphorylation by p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein kinase 2. Using a model of monocyte-to-macrophage differentiation, we show that TTP-driven HIF-1α mRNA stabilization is crucial for cell migration. This demonstrates the physiological importance of a hitherto-unknown mechanism for multilevel regulation of HIF-1α in normoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469526PMC
http://dx.doi.org/10.1091/mbc.E11-11-0949DOI Listing

Publication Analysis

Top Keywords

hif-1α mrna
12
multilevel regulation
8
hif-1 signaling
8
protein kinase
8
ttp
5
regulation
5
hif-1
4
regulation hif-1
4
signaling ttp
4
ttp hypoxia-inducible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!