We present a microorganism-powered thermopneumatic pump that utilizes temperature-dependent slow-kinetics gas (carbon dioxide) generating fermentation of yeast as a pressure source. The pump consists of stacked layers of polydimethylsiloxane (PDMS) and a silicon substrate that form a drug reservoir, and a yeast-solution-filled working chamber. The pump operates by the displacement of a drug due to the generation of gas produced via yeast fermentation carried out at skin temperatures. The robustness of yeast allows for long shelf life under extreme environmental conditions (50 °C, >250 MPa, 5-8% humidity). The generation of carbon dioxide is a linear function of time for a given temperature, thus allowing for a controlled volume displacement. A polymeric prototype (dimensions 15 mm × 15 mm × 10 mm) with a slow flow rate of <0.23 μL min(-1) and maximum backpressure of 5.86 kPa capable of continuously pumping for over two hours is presented and characterized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2lc40620a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!