Co-grafting of porphyrins and fullerenes on ZnO nanorods: towards supramolecular donor-acceptor assembly.

J Colloid Interface Sci

Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325 CNRS, Aix Marseille Université, Marseille, France.

Published: November 2012

This work presents the synthesis and physico-chemical characterization of a novel artificial photosynthetic design, using anisotropic semiconducting nanorods as scaffolds to assemble organic donor-acceptor complexes on their surface. These hierarchical hybrid D-A assemblies were obtained by the co-grafting of porphyrins and fullerenes on the ZnO nanorods. Polarity of the solvent and porphyrin to fullerene ratios were investigated to be markedly influencing the donor-acceptor interaction under the co-grafted conditions on ZnO nanorods. Fourier transform infrared spectroscopy, cyclic voltammetry, electronic absorption and fluorescence spectroscopic techniques were used to characterize the formation and investigate the optoelectronic properties of porphyrin-fullerene complexes on the surface of ZnO. To the best of our knowledge, this is the first example of highly interacting porphyrin-fullerene complexes on ZnO nanorods, which may allow generating efficient nanosystems for artificial photosynthesis and harvesting of solar energy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.06.037DOI Listing

Publication Analysis

Top Keywords

zno nanorods
16
co-grafting porphyrins
8
porphyrins fullerenes
8
fullerenes zno
8
complexes surface
8
porphyrin-fullerene complexes
8
zno
5
nanorods
5
nanorods supramolecular
4
supramolecular donor-acceptor
4

Similar Publications

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Development of Ni-ZnO-ACE-2 peptide hybrids as electrochemical devices for SARS-CoV-2 spike protein detection.

Bioelectrochemistry

January 2025

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:

Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.

View Article and Find Full Text PDF
Article Synopsis
  • New optoelectronic devices are emerging from the use of memristors that can be modulated with light, benefiting fields like computer vision and artificial intelligence.
  • The study features memristors made from a hybrid material of zinc oxide nanorods and PMMA, which do not need a forming step and show effective electronic switching.
  • These devices can switch with UV light and demonstrate notable memory capabilities, enabling applications in neural networks and neuromorphic computing due to their unique photonic synaptic functions.
View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!