MutS homologs play a central role in maintaining genetic stability. We show that MSH5 (MutSHomolog 5) is localized into the mitochondria of germ and somatic cells. This protein binds to mtDNA and interacts with the Twinkle helicase and the DNA polymerase gamma. hMSH5 stimulates mtDNA repair in response to DNA damage induced by oxidative stress. Furthermore, we observed a subsarcolemmal accumulation of hMSH5 in COX negative muscle fibers of patients presenting a mitochondrial myopathy. We report a novel localization for hMSH5 suggesting that this protein may have functions other than those known in meiotic recombination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2012.07.111DOI Listing

Publication Analysis

Top Keywords

msh5 mutshomolog
8
human msh5
4
mutshomolog protein
4
protein localizes
4
localizes mitochondria
4
mitochondria protects
4
protects mitochondrial
4
mitochondrial genome
4
genome oxidative
4
oxidative damage
4

Similar Publications

MSH5, a meiosis-specific member of the MutS-homolog family, is required for normal level of recombination in budding yeast, mice, Caenorhabditis elegans, and Arabidopsis. Here, we report the identification and characterization of its rice homolog, OsMSH5, and demonstrate its function in rice meiosis. Five independent Osmsh5 mutants exhibited normal vegetative growth and severe sterility.

View Article and Find Full Text PDF

MutS homologs play a central role in maintaining genetic stability. We show that MSH5 (MutSHomolog 5) is localized into the mitochondria of germ and somatic cells. This protein binds to mtDNA and interacts with the Twinkle helicase and the DNA polymerase gamma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!