The regulation of Schwann cell (SC) responses to injury stimuli by microRNAs (miRNAs) remains to be explored. Here, we identified 17 miRNAs that showed dynamic expression alterations at five early time points following rat sciatic nerve resection. Then we analyzed the expression pattern of 17 miRNAs, and integrated their putative targets with differentially expressed mRNAs. The resulting 222 potential targets were mainly involved in cell phenotype modulation, including immune response, cell death and cell locomotion. Among 17 miRNAs, miR-182 expression was up-regulated. The enhanced expression of miR-182 was correlated with nerve injury-induced phenotype modulation of SCs. Further investigation revealed that fibroblast growth factor 9 (FGF9) and neurotrimin (NTM) were two direct targets of miR-182 in SCs, with miR-182 binding to the 3'-untranslated region of FGF9 and NTM. Silencing of FGF9 and NTM recapitulated the inhibiting effect of miR-182 mimics on SC proliferation and migration, respectively, whereas enforced knockdown of FGF9 and NTM reversed the promoting effect of miR-182 inhibitor on SC proliferation and migration, respectively. Our data indicate that nerve injury inhibits SC proliferation and migration through rapid regulation of miR-182 by targeting FGF9 and NTM, providing novel insights into the roles of miRNAs in nerve injury and repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488220PMC
http://dx.doi.org/10.1093/nar/gks750DOI Listing

Publication Analysis

Top Keywords

fgf9 ntm
20
proliferation migration
16
nerve injury
12
mir-182
8
schwann cell
8
targeting fgf9
8
sciatic nerve
8
phenotype modulation
8
fgf9
6
ntm
6

Similar Publications

The regulation of Schwann cell (SC) responses to injury stimuli by microRNAs (miRNAs) remains to be explored. Here, we identified 17 miRNAs that showed dynamic expression alterations at five early time points following rat sciatic nerve resection. Then we analyzed the expression pattern of 17 miRNAs, and integrated their putative targets with differentially expressed mRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!