Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, causes cardiac alterations in the host. Although the main clinical manifestations arise during the chronic stage, the mechanisms leading to heart damage develop early during infection. In fact, an intense inflammatory response is observed from acute stage of infection. Recently, peroxisome proliferator-activated receptors (PPARs) have attracted research interest due to their participation in the modulation of inflammation. In this work we addressed the role of 15-Deoxy-∆(12,14) ProstaglandinJ2 (15dPGJ2), a PPARγ natural ligand in the regulation of inflammatory mediators, in acute and chronic experimental mouse models of Chagas' disease with the RA and K98 T. cruzi strains, respectively. This work demonstrates that 15dPGJ2 treatment inhibits the expression and activity of inducible nitric oxide synthase (NOS2) as well as TNF-α and IL-6 mRNA levels. Also, expression and activity of metalloproteinases 2 (MMP-2) and 9 (MMP9) were inhibited by 15dPGJ2. Moreover GW9662, a specific PPARγ antagonist, revealed the participation of other signaling pathways since, in GW9662 presence, 15dPJG2 had a partial effect on the inhibition of inflammatory parameters in the acute model of infection. Accordingly, NF-κB activation was demonstrated, assessing p65 nuclear translocation in the hearts of infected mice with both T. cruzi strains. Such effect was inhibited after 15dPGJ2 treatment. Our findings support the concept that in vivo PPARγ and NF-κB pathways are implicated in the inhibitory effects of 15dPGJ2 on inflammatory mediators at different times depending on whether the infection is caused by the lethal or non-lethal T. cruzi strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2012.08.007 | DOI Listing |
Alzheimers Dement
December 2024
Ahmadu Bello University Zaria, Zaria, Kaduna, Nigeria.
Background: Studies suggest a potential link between stroke and Alzheimer's disease wherein stroke may serve as a trigger for the onset or acceleration of Alzheimer's pathogenesis as damage to the brain's blood vessels may lead to the accumulation of amyloid beta protein which is a hallmark of Alzheimer's disease. Recent research has shown that stroke treatment may hold the key to treating Alzheimer's disease. The anti-inflammatory potentials of Cholinergic signaling are a novel therapeutic target in memory decline associated with Alzheimer's.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
Background: Various studies have evidenced the neuroprotective role of SIRT1 activator. However, whether SIRT1 activator, Piceatannol pharmacological treatment is protective in chronic unpredictable stress induced memory dysfunction remains unknown. Therefore, this study design included testing the hypothesis that Piceatannol administered in chronic unpredictable stress induced memory dysfunction mice shows protective effects, explores & probes underlying the activation of SIRT1 pathway.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
Background: Alzheimer's disease (AD) is a neurodegenerative disorder primarily associated with aging, but manifests as a complex interplay of multiple factors. Decline in sex-hormones, particularly 17-beta estradiol, is linked to the aging process. The risk for onset of AD significantly increases with aging and loss of estradiol.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
Introduction: Iron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.
Method: In the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines.
Haematologica
January 2025
Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Bonn.
Von Willebrand factor (VWF) plays a critical role in hemostasis, and emerging evidence suggests its involvement in inflammation. Our study aimed to investigate the interaction between circulating plasma VWF and neutrophils (polymorphonuclear cells, PMNs), elucidate the fate of VWF after binding, and explore its impact on neutrophil behavior. Neutrophils were isolated from the whole blood of healthy volunteers, and their interaction with plasma VWF was examined ex vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!