Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Febrile seizures (FS) is the most common convulsive disorder in children, but there have been no clinical and experimental studies of the possible treatment of FS with herbal medicines, which are widely used in Asian countries. Paeoniflorin (PF) is a major bioactive component of Radix Paeoniae alba, and PF-containing herbal medicines have been used for neuromuscular, neuropsychiatric, and neurodegenerative disorders. In this study, we analyzed the anticonvulsive effect of PF and Keishikashakuyaku-to (KS; a PF-containing herbal medicine) for hyperthermia-induced seizures in immature rats as a model of human FS. When immature (P5) male rats were administered PF or KS for 10 days, hyperthermia-induced seizures were significantly suppressed compared to control rats. In cultured hippocampal neurons, PF suppressed glutamate-induced elevation of intracellular Ca(2+) ([Ca(2+)](i)), glutamate receptor-mediated membrane depolarization, and glutamate-induced neuronal death. In addition, PF partially suppressed the elevation in [Ca(2+)](i) induced by activation of the metabotropic glutamate receptor 5 (mGluR5), but not that mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors. However, PF did not affect production or release of γ-aminobutyric acid (GABA) in hippocampal neurons. These results suggest that PF or PF-containing herbal medicines exert anticonvulsive effects at least in part by preventing mGluR5-dependent [Ca(2+)](i) elevations. Thus, it could be a possible candidate for the treatment of FS in children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420886 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042920 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!